Skip to main content

High-Throughput VLSI Architectures for VLSI Signal Processing

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 655))

Abstract

The purpose of this work is to develop VLSI DSP architectures for CRC-32 generator polynomial equation to improve better throughput with less number of clock pulses. In this paper, IIR filter-based design method is proposed. Different levels of architectures are proposed to achieve the requirement. LFSR is used in developing VLSI DSP architectures. These architectures had been implemented in Xilinx tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Campobello G, Patane G, Russo M (2003) Parallel CRC realization. IEEE Trans Comput 52(10):1312–1319

    Article  Google Scholar 

  2. Zhang X, Parhi KK (2004) High-speed architectures for parallel long BCH encoders. In: Proceedings of the ACM great lakes symposium on VLSI, Boston, MA, Apr 2004, pp 1–6

    Google Scholar 

  3. Derby JH (2001) High speed CRC computation using state-space transformation. In: Proceedings of the global telecommunications conference 2001, GLOBECOM’01, vol 1, pp 166–170

    Google Scholar 

  4. Cheng C, Parhi KK (2009) High speed VLSI architecture for general linear feedback shift register (LFSR) structures. In: Proceedings of the 43rd Asilomar conference on signals, systems and computers, Monterey, CA, Nov 2009, pp 713–717

    Google Scholar 

  5. Jung J, Yoo H, Lee Y, Park I (2015) Efficient parallel architecture for linear feedback shift registers. IEEE Trans Circuits Syst II Express Briefs 62(11):1068–1072

    Article  Google Scholar 

  6. Huo Y, Li X, Wang W, Liu D (2015) High performance table-based architecture for parallel CRC calculation. In: The 21st IEEE international workshop on local and metropolitan area networks, Beijing, pp 1–6

    Google Scholar 

  7. Ayinala M, Parhi KK (2011) High-speed parallel architectures for linear feedback shift registers. IEEE Trans Signal Process 59(9):4459–4469

    Article  MathSciNet  Google Scholar 

  8. Ayinala M, Parhi KK (2010) Efficient parallel VLSI architecture for linear feedback shift registers. In: IEEE workshop on SiPS, Oct 2010, pp 52–57

    Google Scholar 

  9. Varma RAC, Subbarao MV, Raju GRLVNS (2019) High throughput VLSI architectures for CRC-12 computation. In: Satapathy SC et al (eds) ICETE 2019. LAIS, vol 3. Springer Nature Switzerland AG 2020, pp 704–711

    Google Scholar 

  10. Varma RAC, Apparao YV (2018) High throughput VLSI architectures for CRC-16 computation in VLSI signal processing. In: Anguera J et al (eds) Microelectronics, electromagnetics and telecommunications. Lecture notes in electrical engineering, vol 471. Springer Nature Singapore Pte Ltd

    Google Scholar 

  11. Ayinala M, Brown MJ, Parhi KK (2012) Pipelined parallel FFT architectures via folding transformation. IEEE Trans VLSI Syst 20(6):1068–1081

    Google Scholar 

  12. Garrido M, Parhi KK, Grajal J (2009) A pipelined FFT architecture for real-valued signals. IEEE Trans Circuits Syst I Regul Pap 56(12):2634–2643

    Article  MathSciNet  Google Scholar 

  13. Cheng C, Parhi KK (2007) High-throughput VLSI architecture for FFT computation. IEEE Trans Circuits Syst II Express Briefs 54(10):863–867

    Article  Google Scholar 

  14. Cheng C, Parhi KK (2008) Hardware-efficient low-latency architecture for high-throughput rate Viterbi decoders. IEEE Trans Circuits Syst II Express Briefs 55(12):1254–1258

    Article  Google Scholar 

  15. Liu Y, Parhi KK (2016) Architectures for recursive digital filters using stochastic computing. IEEE Trans Signal Process 64(14):3705–3718

    Google Scholar 

  16. Prakash MS, Shaik RA (2013) Low-area and high-throughput architecture for an adaptive filter using distributed arithmetic. IEEE Trans Circuits Syst II 60(11):781–785

    Google Scholar 

  17. Dake JL, Terlapu SK (2016) Implementation of high-throughput digit-serial redundant basis multiplier over finite field. IOSR J VLSI Signal Process (IOSR-JVSP) 6(4):35–45. Ver. I, e-ISSN; 2319-4200, ISSN No.: 2319-4197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Venkata Subbarao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varma, R.A.C., Subbarao, M.V., Varma, D.R., Raju, G.R.L.V.N.S. (2021). High-Throughput VLSI Architectures for VLSI Signal Processing. In: Chowdary, P., Chakravarthy, V., Anguera, J., Satapathy, S., Bhateja, V. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-15-3828-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3828-5_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3827-8

  • Online ISBN: 978-981-15-3828-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics