Skip to main content

An Optimized Path Loss Model for Urban Wireless Channels

  • Conference paper
  • First Online:
Microelectronics, Electromagnetics and Telecommunications

Abstract

The mobile network planner relies on a signal propagation path loss model to enhance the wireless communication system in order to avail an acceptable limit of quality of service for the mobile users. Hence, it is very crucial to find a robust propagation model suitable for a range of environmental conditions which may be implemented as guidelines for planning of cell in wireless communication systems. Path loss is the regulating factor in limiting the performance of the system in urban areas. It is essential to develop an appropriate path loss model which predicts the path loss values depending on the received signal strength. In the present paper, the COST 231 propagation model has been optimized by making use of Newton’s method. The statistical measures like absolute average error and root-mean-square error were calculated for the frequencies 800 and 1800 MHz. From the simulation results, it is found that the optimized model best acclimatizes with a smaller mean relative error. The lesser value of mean error supports successful implementation of the optimization technique and therefore suggested that the present optimized model can be useful for telecommunication providers to improve the service for mobile user satisfaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alqudah YA (2013) On the performance of Cost 231 Walfisch Ikegami model in deployed 3.5 GHz network. In: 2013 international conference on technological advances in electrical, electronics and computer engineering (TAEECE). IEEE, pp 524–527

    Google Scholar 

  2. Lopez-Barrantes AJ, Gutierrez O, Saez de Adana F, Kronberger R (2012) Comparison of empirical models and deterministic models for the analysis of interference in indoor environments. In: 2012 Asia-Pacific symposium on electromagnetic compatibility (APEMC). IEEE, pp 509–512

    Google Scholar 

  3. Seidel SY, Rappaport TS (1992) 914 MHz path loss prediction models for indoor wireless communications in multifloored buildings. IEEE Trans Antennas Propag 40(2):207–217

    Article  Google Scholar 

  4. Rappaport TS, Seidel SY, Schaubach KR (1993) Site-specific propagation prediction for PCS system design. In: Wireless personal communications. Springer, Boston, MA, pp 281–315

    Google Scholar 

  5. Tsang K-F, Chan W-S, Jing D, Kang K, Yuen S-Y, Zhang W-X (1998) Radiosity method: a new propagation model for microcellular communication. In: IEEE antennas and propagation society international symposium, 1998, vol 4. IEEE, pp 2228–2231

    Google Scholar 

  6. Hrovat A, Kandus G, Javornik T (2014) A survey of radio propagation modeling for tunnels. IEEE Commun Surv Tutor 16(2):658–669

    Article  Google Scholar 

  7. Tan SY, Tan HS (1996) A microcellular communications propagation model based on the uniform theory of diffraction and multiple image theory. IEEE Trans Antennas Propag 44(10):1317–1326

    Article  Google Scholar 

  8. Popescu I, Nafornita I, Constantinou P (2005) Comparison of neural network models for path loss prediction. In: IEEE international conference on wireless and mobile computing, networking and communications, 2005 (WiMob’2005), vol 1. IEEE, pp 44–49

    Google Scholar 

  9. Wang Y, Jiang T (2016) Norm adaption penalized least mean square/fourth algorithm for sparse channel estimation. Sig Process 128:243–251

    Article  Google Scholar 

  10. Alotaibi FD, Abdennour A, Ali AA (2008) A robust prediction model using ANFIS based on recent TETRA outdoor RF measurements conducted in Riyadh city–Saudi Arabia. AEU-Int J Electron Commun 62(9):674–682

    Article  Google Scholar 

  11. Sotiroudis SP, Siakavara K (2015) Mobile radio propagation path loss prediction using artificial neural networks with optimal input information for urban environments. AEU-Int J Electron Commun 69(10):1453–1463

    Article  Google Scholar 

  12. Cheerla S, Venkata Ratnam D, Borra HS (2018) Neural network-based path loss model for cellular mobile networks at 800 and 1800 MHz bands. AEU-Int J Electron Commun 94:179–186

    Article  Google Scholar 

  13. Mollel MS, Kisangiri M (2014) Optimization of Hata model based on measurements data using least square method: a case study in Dar-es-Salaam—Tanzania. Int J Comput Appl 102(4)

    Google Scholar 

  14. Tahat A, Taha M (2012) Statistical tuning of Walfisch-Ikegami propagation model using particle swarm optimization. In: 2012 IEEE 19th symposium on communications and vehicular technology in the Benelux (SCVT). IEEE

    Google Scholar 

  15. Roslee MB, Kwan KF (2010) Optimization of Hata propagation prediction model in suburban area in Malaysia. Prog Electromagn Res 13:91–106

    Google Scholar 

  16. Munir H, Hassan SA, Pervaiz H, Ni Q, Musavian L (2017) Resource optimization in multi-tier HetNets exploiting multi-slope path loss model. IEEE Access 5:8714–8726

    Google Scholar 

  17. Zhu J, Zhao M, Zhou S (2018) An optimization design of ultra dense networks balancing mobility and densification. IEEE Access 6

    Google Scholar 

  18. Damosso E, Correia LM (1999) COST action 231: digital mobile radio towards future generation systems: final report. European Commission

    Google Scholar 

  19. Alqudah YA (2013) On the performance of COST 231 Walfisch Ikegami model in deployed 3.5 GHz network. IEEE. ISBN: 978-1-4673-5613-8

    Google Scholar 

  20. Walfisch J, Bertoni HL (1988) A theoretical model of UHF propagation in urban environments. IEEE Trans Antennas Propag 36(12):1788–1796

    Article  Google Scholar 

  21. Xia HH, Bertoni HL (1992) Diffraction of cylindrical and plane waves by an array of absorbing half-screens. IEEE Trans Antennas Propag 40(2):170–177

    Article  Google Scholar 

  22. Maciel LR, Bertoni HL, Xia HN (1993) Unified approach to prediction of propagation over buildings for all ranges of base station antenna height

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Department of Science and Technology (DST), New Delhi, India, SR/FST/ESI-130/2013(C), under DST-FIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreevardhan Cheerla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheerla, S., Venkata Ratnam, D., Dabbakuti, J.R.K.K. (2021). An Optimized Path Loss Model for Urban Wireless Channels. In: Chowdary, P., Chakravarthy, V., Anguera, J., Satapathy, S., Bhateja, V. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 655. Springer, Singapore. https://doi.org/10.1007/978-981-15-3828-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3828-5_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3827-8

  • Online ISBN: 978-981-15-3828-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics