Skip to main content

Representative Databases for Feature Engineering and Computational Intelligence in ECG Processing

  • Chapter
  • First Online:
Feature Engineering and Computational Intelligence in ECG Monitoring

Abstract

Standard electrocardiogram (ECG) database is a key point for validating the algorithms of feature detection and disease diagnosis. Researchers usually use the ECG databases posted in the PhysioNet platform, which were basically collected from clinical environment with high signal quality. Performance of the developed algorithms from these databases suffers the poor robustness and weak generalization when implemented on the dynamic ECGs typically collected by wearable devices. Standard and accredited dynamic databases are absent. Six open-accessed ECG databases, including signal quality database, China physiological signal challenge (CPSC) 2018 and 2019 databases, arrhythmia database, atrial fibrillation (AF) database, and long-term ECG database, were therefore tidied up and published freely. All the valuable ECG feature information were carefully annotated by cardiologists. We hope these databases may benefit the ECG study on dynamic signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bansal, A., Joshi, R.: Portable out-of-hospital electrocardiography: a review of current technologies. J Arrhythm. 34, 129 (2018)

    Article  Google Scholar 

  2. Mishra, B., Arora, N., Vora, Y.: Wearable ECG for real time complex P-QRS-T detection and classification of various arrhythmias. In: 2019 11th International Conference on Communication Systems & Networks (COMSNETS), vol. 870. IEEE (2019)

    Google Scholar 

  3. Elgendi, M., Eskofier, B., Dokos, S., Abbott, D.: Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS One. 9, e84011 (2014)

    Article  Google Scholar 

  4. Liu, C., Zhang, X., Zhao, L., Liu, F., Chen, X., Yao, Y., Li, J.: Signal quality assessment and lightweight QRS detection for wearable ECG smartvest system. IEEE Int. Things J. 6, 1363 (2019)

    Article  Google Scholar 

  5. Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Int. Things J. 2, 515 (2015)

    Article  Google Scholar 

  6. Yang, Z., Zhou, Q., Lei, L., Zheng, K., Xiang, W.: An IoT-cloud based wearable ECG monitoring system for smart healthcare. J. Med. Syst. 40, 286 (2016)

    Article  Google Scholar 

  7. Satija, U., Ramkumar, B., Manikandan, M.S.: Real-time signal quality-aware ECG telemetry system for IoT-based health care monitoring. IEEE Int. Things J. 4, 815 (2017)

    Article  Google Scholar 

  8. Zheng, Y., Ding, X., Poon, C.C.Y., Lo, B.P.L., Zhang, H., Zhou, X., Yang, G., Zhao, N., Zhang, Y.: Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61, 1538 (2014)

    Article  Google Scholar 

  9. Nemati, E., Deen, M.J., Mondal, T.: A wireless wearable ECG sensor for long-term applications. IEEE Commun. Mag. 50, 36 (2012)

    Article  Google Scholar 

  10. Lin, B., Chou, W., Wang, H., Huang, Y., Pan, J.: Development of novel non-contact electrodes for mobile electrocardiogram monitoring system. IEEE J. Transl. Eng. Health Med. 1, 1 (2013)

    Google Scholar 

  11. Gargiulo, G., Bifulco, P., Cesarelli, M., Ruffo, M., Romano, M., Calvo, R.A., Jin, C., van Schaik, A.: An ultra-high input impedance ECG amplifier for long-term monitoring of athletes. Med. Devices (Auckland, NZ). 3(1), (2010)

    Google Scholar 

  12. Arcelus, A., Sardar, M., Mihailidis, A.: Design of a capacitive ECG sensor for unobtrusive heart rate measurements. In: 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), vol. 407. IEEE (2013)

    Google Scholar 

  13. Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R., Nagle, H.T.: A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37, 85 (1990)

    Article  CAS  Google Scholar 

  14. Gribok, A.V., Chen, X., Reifman, J.: A robust method to estimate instantaneous heart rate from noisy electrocardiogram waveforms. Ann. Biomed. Eng. 39, 824 (2011)

    Article  Google Scholar 

  15. Khamis, H., Weiss, R., Xie, Y., Chang, C., Lovell, N.H., Redmond, S.J.: QRS detection algorithm for telehealth electrocardiogram recordings. IEEE Trans. Biomed. Eng. 63, 1377 (2016)

    Article  Google Scholar 

  16. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101, e215 (2000)

    CAS  Google Scholar 

  17. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH arrhythmia database. IEEE Eng. Med. Biol. Mag. 20, 45 (2001)

    Article  CAS  Google Scholar 

  18. Mark, R., Moody, G.: MIT-BIH arrhythmia database directory. Massachusetts Institute of Technology, Cambridge (1988)

    Google Scholar 

  19. Liu, F., Liu, C., Zhao, L., Zhang, X., Wu, X., Xu, X., Liu, Y., Ma, C., Wei, S., He, Z., Li, J., Kwee, E.N.Y.: An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection. J. Med. Imaging Health Inf. 8, 1368 (2018)

    Article  Google Scholar 

  20. Gao, H., Liu, C., Wang, X., Zhao, L., Shen, Q., Ng, E., Li, J., An Open-Access, E.C.G.: Database for algorithm evaluation of QRS detection and heart rate estimation. J. Med. Imaging Health Inf. 9, 1853 (2019)

    Article  Google Scholar 

  21. Redmond, S.J., Lovell, N.H., Basilakis, J., Celler, B.G.: ECG quality measures in telecare monitoring. In: 2869. IEEE (2008)

    Google Scholar 

  22. Behar, J., Oster, J., Li, Q., Clifford, G.D.: ECG signal quality during arrhythmia and its application to false alarm reduction. IEEE Trans. Biomed. Eng. 60, 1660 (2013)

    Article  Google Scholar 

  23. Li, Q., Mark, R.G., Clifford, G.D.: Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter. Physiol. Meas. 29, 15 (2007)

    Article  Google Scholar 

  24. Silva, I., Moody, G.B., Celi, L.: Improving the quality of ECGs collected using mobile phones: the Physionet/Computing in Cardiology Challenge 2011. In: 2011 Computing in Cardiology, vol. 273. IEEE (2011)

    Google Scholar 

  25. Clifford, G.D., Behar, J., Li, Q., Rezek, I.: Signal quality indices and data fusion for determining clinical acceptability of electrocardiograms. Physiol. Meas. 33, 1419 (2012)

    Article  CAS  Google Scholar 

  26. Searle, A., Kirkup, L.: A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 21, 271 (2000)

    Article  CAS  Google Scholar 

  27. Baek, J., An, J., Choi, J., Park, K., Lee, S.: Flexible polymeric dry electrodes for the long-term monitoring of ECG. Sens. Actuators A Phys. 143, 423 (2008)

    Article  CAS  Google Scholar 

  28. Tang, A.S., Wells, G.A., Talajic, M., Arnold, M.O., Sheldon, R., Connolly, S., Hohnloser, S.H., Nichol, G., Birnie, D.H., Sapp, J.L.: Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363, 2385 (2010)

    Article  CAS  Google Scholar 

  29. Huang, H., Liu, J., Zhu, Q., Wang, R., Hu, G.: Detection of inter-patient left and right bundle branch block heartbeats in ECG using ensemble classifiers. Biomed. Eng. Online. 13, 72 (2014)

    Article  Google Scholar 

  30. Clifford, G.D., Azuaje, F., Mcsharry, P.: ECG statistics, noise, artifacts, and missing data. Adv. Methods Tools ECG Data Anal. 6, 18 (2006)

    Google Scholar 

  31. AAMI A., EC A.ANSI/AAMI. EC57:1998/(R)2008–Testing and reporting performance results of cardiac rhythm and ST segment measurement algorithms. American National Standards Institute, Arlington (2008)

    Google Scholar 

  32. Lip, G.Y.H., Fauchier, L., Freedman, S.B., Van Gelder, I., Natale, A., Gianni, C., Nattel, S., Potpara, T., Rienstra, M., Tse, H., Lane, D.A.: Atrial fibrillation. Nat. Rev. Dis. Primers. 2, 16016 (2016)

    Article  Google Scholar 

  33. Clifford, G.D., Liu, C., Moody, B., Li-Wei, H.L., Silva, I., Li, Q., Johnson, A.E., Mark, R.G.: AF classification from a short single lead ECG recording: the PhysioNet/Computing in Cardiology Challenge 2017. In: 2017 Computing in Cardiology (CinC), vol. 1. IEEE (2017)

    Google Scholar 

  34. European Heart Rhythm Association, European Association for Cardio-Thoracic Surgery, Camm, A.J., Kirchhof, P., Lip, G.Y., Schotten, U., Savelieva, I., Ernst, S., Van Gelder, I.C.: Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). Eur. Heart J. 31, 2369 (2010)

    Google Scholar 

  35. Levy, S., Camm, A.J., Saksena, S., Aliot, E., Breithardt, G., Crijns, H.J., Davies, D.W., Kay, G.N., Prystowsky, E.N., Sutton, R.: International consensus on nomenclature and classification of atrial fibrillation: a collaborative project of the Working Group on Arrhythmias and the Working Group of Cardiac Pacing of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. J. Cardiovasc. Electrophysiol. 14, 443 (2003)

    Article  Google Scholar 

  36. Zhao, L., Liu, C., Wei, S., Shen, Q., Zhou, F., Li, J.: A new entropy-based atrial fibrillation detection method for scanning wearable ECG recordings. Entropy. 20, 904 (2018)

    Article  Google Scholar 

  37. Camm, A.J., Corbucci, G., Padeletti, L.: Usefulness of continuous electrocardiographic monitoring for atrial fibrillation. Am. J. Cardiol. 110, 270 (2012)

    Article  Google Scholar 

  38. Ladavich, S., Ghoraani, B.: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity. Biomed. Signal Process. Control. 18, 274 (2015)

    Article  Google Scholar 

  39. Moody, G.: A new method for detecting atrial fibrillation using RR intervals. Comput. Cardiol. 10, 227 (1983)

    Google Scholar 

  40. Oh, S.L., Ng, E.Y., San, T.R., Acharya, U.R.: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats. Comput. Biol. Med. 102, 278 (2018)

    Article  Google Scholar 

  41. Luz, E.J.D.S., Schwartz, W.R., Cámara-Chávez, G., Menotti, D.: ECG-based heartbeat classification for arrhythmia detection: a survey. Comput. Methods Prog Biomed. 127, 144 (2016)

    Article  Google Scholar 

  42. Banko, M., Brill, E.: Scaling to very very large corpora for natural language disambiguation. In: Proceedings of the 39th Annual Meeting on Association for Computational Linguistics, vol. 26. Association for Computational Linguistics (2001)

    Google Scholar 

  43. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR, vol. 1, pp. 7. Citeseer (2011)

    Google Scholar 

  44. http://www.shelab.cn/Data

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, H., Liu, C., Shen, Q., Li, J. (2020). Representative Databases for Feature Engineering and Computational Intelligence in ECG Processing. In: Liu, C., Li, J. (eds) Feature Engineering and Computational Intelligence in ECG Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-3824-7_2

Download citation

Publish with us

Policies and ethics