Skip to main content

False Alarm Rejection for ICU ECG Monitoring

  • Chapter
  • First Online:
Feature Engineering and Computational Intelligence in ECG Monitoring

Abstract

Alarm fatigue, a pain point in clinic, includes ECG false alarm and ECG meaningless alarm. For one thing, ECG false alarm is mainly caused by clinical care, patients’ daily activity and attachment connection failure. Two viable solutions including multi-lead and multi-parameter are provided. For another, ECG meaningless alarm contains arrhythmia class and heart rate over-limit class. Clinical alarm management system improvement and intelligent alarm are proposed in order to reduce ECG meaningless alarm. In a word, this article indicates many effective solutions to relief alarm fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Drew, B.J., Harris, P., Zègre-Hemsey, J.K., et al.: Insights into the problem of alarm fatigue with physiologic monitor devices: a comprehensive observational study of consecutive intensive care unit patients. PLoS One. 9(10), e110274 (2014)

    Article  Google Scholar 

  2. ECRI Institute: Top 10 health technology hazards for 2014. Health Dev. 42(11), 354 (2013)

    Google Scholar 

  3. Kowalczyk L (2010) MGH death spurs review of patient monitors. Available from http://www.boston.com/news/health/articles/2010/02/21/mgh_death_spurs_review_of_patient_monitors/?page=1. Accessed 29 Jul 2014.

    Google Scholar 

  4. Joint Commission: Medical device alarm safety in hospitals. Sent. Event Alert. 50, 1–3 (2013)

    Google Scholar 

  5. Joint Commission. 2016 National patient safety goals effective January 1, 2016. The Joint Commission website. http://www.jointcommission.org/assets/1/6/2016_NPSG_HAP.pdf. Accessed 16 Sep 2017.

    Google Scholar 

  6. Ruppel, H., Funk, M., Whittemore, R.: Measurement of physiological monitor alarm accuracy and clinical relevance in intensive care units. Am. J. Crit. Care. 27(1), 11–21 (2018)

    Article  Google Scholar 

  7. Bonafide, C.P., Lin, R., Zander, M., et al.: Association between exposure to nonactionable physiologic monitor alarms and response time in a children’s hospital. J. Hosp. Med. 10(6), 345–351 (2015)

    Article  Google Scholar 

  8. Bonafide, C.P., Zander, M., Graham, C.S., et al.: Video methods for evaluating physiologic monitor alarms and alarm responses. Biomed. Instrum. Technol. 48(3), 220–230 (2014)

    Article  Google Scholar 

  9. Wu, J., Zhihong, Y., Xiangping, C.: Current status and influencing factors of bedside monitor alarms in ICU. J. Nurs. Sci. 30(24), 20–22 (2015)

    Google Scholar 

  10. Mirvis, D.M., et al.: Instrumentation and practice standards for electrocardiographic monitoring in special care units. A report for health professionals by a Task Force of the Council on Clinical Cardiology. American Heart Association. Circulation. 79, 464–471 (February 1989)

    Article  CAS  Google Scholar 

  11. Jianwei, S., et al.: A four-lead real time arrhythmia analysis algorithm. Comput. Cardiol. 44, 1–4 (2017)

    Google Scholar 

  12. Jianwei, S., et al.: Real-time fusion of ECG and SpO2 signals to reduce false alarms. Comput. Cardiol. 45, 1–4 (2018)

    Google Scholar 

  13. Clifford, G.D., Silva, I., Moody, B., Li, Q., Kella, D., Shahin, A., Kooistra, T., Perry, D., Mark, R.G.: The PhysioNet/computing in cardiology challenge 2015: reducing false arrhythmia alarms in the ICU. Comput. Cardiol. 273–276 (2015)

    Google Scholar 

  14. Liu, C., Zhao, L., Tang, H.: Reduction of false alarms in intensive care unit using multi-feature fusion method. In: Computing in Cardiology. IEEE, Washington, DC (2015)

    Google Scholar 

  15. Kalidas, V., Tamil, L.S.: Enhancing accuracy of arrhythmia classification by combining logical and machine learning techniques. In: Computing in Cardiology. IEEE, Washington, DC (2015)

    Google Scholar 

  16. Eerikainen, L.M., Vanschoren, J., Rooijakkers, M.J., et al.: Decreasing the false alarm rate of arrhythmias in intensive care using a machine learning approach. In: Computing in Cardiology. IEEE, Washington, DC (2015)

    Google Scholar 

  17. Inokuchi, R., Sato, H., Nanjo, Y., et al.: The proportion of clinically relevant alarms decreases as patient clinical severity decreases in intensive care units: a pilot study. BMJ Open. 3(9), e003354 (2013)

    Article  Google Scholar 

  18. Siebig, S., Kuhls, S., Imhoff, M., Gather, U., Schölmerich, J., Wrede, C.E.: Intensive care unit alarms--how many do we need? Crit. Care Med. 38(2), 451–456 (2010)

    Article  Google Scholar 

  19. Siebig, S., Kuhls, S., Imhoff, M., et al.: Collection of annotated data in a clinical validation study for alarm algorithms in intensive care: a methodologic framework. J. Crit. Care. 25(1), 128–135 (2010)

    Article  Google Scholar 

  20. The Cardiac Arrhythmia Suppression Trial (CAST) Investigators: Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. N. Engl. J. Med. 321, 406–412 (1989)

    Article  Google Scholar 

  21. Fidler, R.L., Pelter, M., Drew, B.J., et al.: Understanding heart rate alarm adjustment in the intensive care units through an analytical approach. PLoS One. 12(11), e0187855 (2017)

    Article  Google Scholar 

  22. Allan, S.H., Doyle, P.A., Sapirstein, A., et al.: Data-driven implementation of alarm reduction interventions in a cardiovascular surgical ICU. Jt. Comm. J. Qual. Patient Saf. 43(2), 62–70 (2017)

    PubMed  Google Scholar 

  23. Aurore, L., Rina, A., Ana, M., et al.: Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front. Physiol. 9, 213–226 (2018)

    Google Scholar 

  24. Simjanoska, M., Gjoreski, M., Gams, M., et al.: Non-invasive blood pressure estimation from ECG using machine learning techniques. Sensors. 18(4), 1160–1174 (2018)

    Article  Google Scholar 

  25. Casas, M., Avitia, R.L., Reyna, M.A., et al.: Evaluation of three machine learning algorithms as classifiers of premature ventricular contractions on ECG beats. In: 2016 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE), pp. 1–6. IEEE, Washington, DC (2016)

    Google Scholar 

  26. Pourbabaee, B., Roshtkhari, M.J., Khorasani, K.: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans. Syst. Man Cybernet. Syst. 48(12), 1–10 (2018)

    Article  Google Scholar 

  27. Wu, M.H., Chang, E.J., Chu, T.H.: Personalizing a generic ECG heartbeat classification for arrhythmia detection: a deep learning approach. In: IEEE Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE, Washington, DC (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianliang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dai, J., Sun, Z., He, X. (2020). False Alarm Rejection for ICU ECG Monitoring. In: Liu, C., Li, J. (eds) Feature Engineering and Computational Intelligence in ECG Monitoring. Springer, Singapore. https://doi.org/10.1007/978-981-15-3824-7_12

Download citation

Publish with us

Policies and ethics