Skip to main content

Self-Reinforcement in Natural Rubber (NR): Template Crystallization

  • Chapter
  • First Online:
Book cover Reinforcement of Rubber

Abstract

Natural rubber (NR) is unique in its characteristics. The most notable among them is its self-reinforcing ability. Namely, it is not necessary to mix carbon black (CB) onto NR simply for mechanical strength. The use of CB on tire rubber is for controlling tack, wear or abrasion, and dynamic friction-related properties such as grip and traction. To explain the self-reinforcement of NR, strain-induced crystallization (SIC) has been reasonably assumed, and now, it is accepted widely. However, most researchers have adopted the traditional nucleation mechanism for SIC, even though SIC is due to fully extended network rubber chains. The extended chain formation upon elongation is a matter of necessity. In other words, nucleation is a stochastic process, while SIC is a deterministic process upon straining of NR vulcanizates. Thus, a new concept, template crystallization mechanism, is introduced here in order to rationally explain the SIC behaviors of NR vulcanizates. Template crystallization may be an important concept in ‘elastocaloric’ contractile process, which has been proposed for some functional applications of NR vulcanizates such as a shape memory device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This remark was originally published as Sect. I in the article appeared in KGK, October issue, 2017, pp. 38–39 (see, www.kgk-rubberpoint.de).

References

  1. Y. Ikeda, A. Kato, S. Kohjiya, Y. Nakajima, Rubber Science: A Modern Approach (Springer Nature, Singapore, 2018)

    Book  Google Scholar 

  2. S. Kohjiya, Gomuzairyokagaku Joronn (Nihon Valqua Co., Tokyo, 1995) (In Japanese)

    Google Scholar 

  3. T. Minami, M. Tatsumisago, M. Wakihara, C. Iwakura, S. Kohjiya, I. Tanaka (eds.), Solid State Ionics for Batteries, Chap. 6 (Springer, Tokyo, 2005)

    Google Scholar 

  4. S. Kohjiya, Y. Ikeda, Recent Res. Dev. Electrochem. 4, 99 (2001)

    CAS  Google Scholar 

  5. Y. Tanaka, Rubber Chem. Technol. 74, 355 (2001)

    Article  CAS  Google Scholar 

  6. S. Kohjiya, Nippon Gomu Kyokaishi 88, 18, 93 (2015) (in Japanese)

    Google Scholar 

  7. Y. Ikeda, A. Tohsan, S. Kohjiya, Sustainable Development: Processes, Challenges and Prospects, Chap. 3, ed. by D. Reyes (Nova Science Publishers, New York, 2015)

    Google Scholar 

  8. S. Kohjiya, Y. Ikeda (eds.), Chemistry, Manufacture and Applications of Natural Rubber, ed. by S. Kohjiya, Y. Ikeda (Woodhead/Elsevier, Cambridge, 2014)

    Google Scholar 

  9. S. Kohjiya, Natural Rubber: From the Odyssey of the Hevea Tree to the Transportation Age (Smithers Rapra, Shrewsbury, 2015)

    Google Scholar 

  10. A.H. Tullo, Chem. Eng. News, 20(18) (2015)

    Google Scholar 

  11. G.G. Lowry (eds.), Markov Chains and Monte Carlo Calculations in Polymer Science (Marcel Dekker, New York, 1970)

    Google Scholar 

  12. R.-J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science (Oxford University Press, New York, 2000)

    Google Scholar 

  13. S.D. Gehman, Chem. Rev. 26, 203 (1940)

    Article  CAS  Google Scholar 

  14. L. Mandelkern, Rubber Chem. Technol. 66, G61 (1994)

    Article  Google Scholar 

  15. F.W. Billmeyer Jr, Textbook of Polymer Science, 3rd edn., (Wiley, New York, 1984)

    Google Scholar 

  16. B. Erman, J.E. Mark, Structures and Properties of Rubberlike Networks (Oxford University Press, Oxford, 1997)

    Google Scholar 

  17. T. Kawamura, K. Urayama, S. Kohjiya, Macromolecules 34, 8252 (2001)

    Article  CAS  Google Scholar 

  18. K. Urayama, T. Kawamura, S. Kohjiya, Macromolecules 34, 8261 (2001)

    Article  CAS  Google Scholar 

  19. T. Kawamura, K. Urayama, S. Kohjiya, J. Polym. Sci. Part B Polym. Phys. 40, 2780 (2002)

    Google Scholar 

  20. K. Urayama, T. Kawamura, S. Kohjiya, J. Chem. Phys. 118, 5658 (2003)

    Article  CAS  Google Scholar 

  21. K. Urayama, S. Kohjiya, J. Chem. Phys. 104, 3352 (1996)

    Article  CAS  Google Scholar 

  22. K. Urayama, T. Kawamura, S. Kohjiya, J. Chem. Phys. 105, 4833 (1996)

    Article  CAS  Google Scholar 

  23. T. Kawamura, K. Urayama, S. Kohjiya, J. Chem. Phys. 112, 9105 (2000)

    Article  CAS  Google Scholar 

  24. C.M. Roland, Viscoelastic Behavior of Rubbery Materials (Oxford University Press, Oxford, 2011)

    Book  Google Scholar 

  25. W.W. Graessley, Polymer Liquids and Networks: Dynamics and Rheology (Garland Science, London, 2008)

    Google Scholar 

  26. L. Mandelkern, Crystallization of Polymers, vols. 1, 2, 2nd edn. (Cambridge University Press, New York, 2002, 2004) (The first edition was published in 1964)

    Google Scholar 

  27. L.A. Wood, N. Bekkedahl, J. Nat. Bur. Stan. 36, 489 (1946)

    Article  Google Scholar 

  28. L. Bateman, (ed.), The Chemistry and Physics of Rubber-Like Substances (MacLaren & Sons, London, 1963)

    Google Scholar 

  29. A.D. Roberts (ed.), Natural Rubber Science and Technology (Oxford University Press, Oxford, 1988)

    Google Scholar 

  30. M.R. Sethuraj, N.M. Mathew, Natural Rubber: Biology, Cultivation and Technology (Elsevier, Amsterdam, 1992)

    Google Scholar 

  31. K. Brüning, In-Situ Structure of Elastomers during Deformation and Fracture (Springer, Cham, 2014)

    Book  Google Scholar 

  32. F.W. Billmeyer, Jr, Textbook of Polymer Science, 3rd edn. (Wiley, New York, 1984), p. 283 (The first edition was published in 1957)

    Google Scholar 

  33. N. Saito, Polymer Physics (Shokabo, Tokyo, 1958), p. 298 (In Japanese)

    Google Scholar 

  34. A. Stevenson, R. Campion, Engineering with Rubber: How to Design Rubber Compounds, 2nd edn., ed. by A.G. Gent (Hanser, Munich, 2001), p. 192

    Google Scholar 

  35. D.C. Bassett, Principles of Polymer Morphology (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  36. M. Kleman, O.D. Lavrentovich, Soft Matter Physics: An Introduction (Springer, New York, 2003)

    Google Scholar 

  37. R.G. Alberstein, F.A. Tezcan, Nature 556, 41 (2018)

    Article  CAS  PubMed  Google Scholar 

  38. R. Burfield, Polymer 25, 1823 (1984)

    Article  CAS  Google Scholar 

  39. S. Kohjiya, Y. Ikeda, Crystallization of natural rubber. Paper presented at the 191st technical meeting of rubber division, American Chemical Society, Beachwood, OH, 25–27 Apr 2017

    Google Scholar 

  40. S. Kohjiya, P. Junkong, Y. Ikeda, Kautsch. Gummi Kunstst. 38, Oct. issue (2017)

    Google Scholar 

  41. S. Hashizume, Y. Ikeda, S. Kohjiya, Peculiar Behavior of Natural Rubber in the Mixing Process (TechnoBiz, Bangkok, 2018)

    Google Scholar 

  42. S. Hashizume, Nippon Gomu Kyokaishi 63, 71 (1990) (in Japanese)

    Article  CAS  Google Scholar 

  43. N. Okui, S. Umemoto, R. Kawano, A. Mamun, Progress in Understanding of Polymer Crystallization, Chap. 19, ed. by G. Reiter, G.R. Strobl (Springer, Berlin, 2007)

    Google Scholar 

  44. A. J. Pennings, J. Polym. Sci. Symposia 59, 55 (1977)

    Google Scholar 

  45. E.H. Andrews, Proc. Roy. Soc. A277, 562 (1964)

    Google Scholar 

  46. E.H. Andrews, P.J. Owen, A. Singh, Rubber Chem. Technol. 45, 1315 (1972)

    Article  Google Scholar 

  47. P.J. Philips, N. Vatansever, Macromolecules 20, 2138 (1987)

    Article  Google Scholar 

  48. T. Shimizu, M. Tsuji, S. Kohjiya, Mater. Sci. Res. Int. 4, 117 (1998)

    CAS  Google Scholar 

  49. M. Tsuji, T. Shimizu, S. Kohjiya, Polym. J. 31, 784 (1999)

    Article  CAS  Google Scholar 

  50. M. Tsuji, T. Shimizu, S. Kohjiya, Polym. J. 32, 505 (2000)

    Article  CAS  Google Scholar 

  51. T. Shimizu, M. Tosaka, M. Tsuji, S. Kohjiya, Rubber Chem. Technol. 73, 926 (2000)

    Article  CAS  Google Scholar 

  52. S. Onogi, T. Masuda, K. Kitagawa, Macromolecules 3, 109 (1970)

    Article  CAS  Google Scholar 

  53. N. Rahman, A. Isanasari, R. Anggraeni, S. Honggokusumo, M. Iguchi, T. Masuko, K. Tashiro, Polymer 44, 283 (2003)

    Article  CAS  Google Scholar 

  54. J.R. Katz, Naturwissenschaften 13, 410 (1925)

    Article  Google Scholar 

  55. J.R. Katz, Naturwissenschaften 13, 900 (1925)

    Article  CAS  Google Scholar 

  56. J.R. Katz, Kolloid Z. 36, 300 (1925)

    Article  CAS  Google Scholar 

  57. J.R. Katz, Kolloid Z. 37, 19 (1925)

    Article  CAS  Google Scholar 

  58. H. Morawetz, Polymers: The Origins and Growth of a Science (Wiley, New York, 1985)

    Google Scholar 

  59. J.E. Mark, B. Erman (eds.), Elastomeric Polymer Networks (Prentice Hall, Englewood Cliffs, 1992)

    Google Scholar 

  60. J. Mazur, Higher order Markov chains and statistical thermodynamics of linear polymers, in Markov Chains and Monte Carlo Calculations in Polymer Science, Chap. 6, ed. by G.G. Lowry (Marcel Dekker, New York, 1970)

    Google Scholar 

  61. W. Feller, An Introduction to Probability Theory and Its Applications, Modern Asia Edition (Charles E. Tuttle, Tokyo, 1960)

    Google Scholar 

  62. S. Murakami, M. Senoo, S. Toki, S. Kohjiya, Polymer 43, 2117 (2002)

    Article  CAS  Google Scholar 

  63. M. Tosaka, S. Kohjiya, S. Murakami, S. Poompradub, Y. Ikeda, S. Toki, I. Sics, B.S. Hsiao, Rubber Chem. Technol. 77, 711 (2004)

    Article  CAS  Google Scholar 

  64. M. Tosaka, S. Murakami, S. Poompradub, S. Kohjiya, Y. Ikeda, S. Toki, I. Sics, B.S. Hsiao, Macromolecules 37, 3299 (2004)

    Article  CAS  Google Scholar 

  65. S. Poompradub, M. Tosaka, S. Kohjiya Y. Ikeda, S. Toki, I. Sics, B.S. Hsio, J. Appl. Phys. 97, 103529 (2005)

    Google Scholar 

  66. Y. Ikeda, Y. Yasuda, S. Makino, S. Yamamoto, M. Tosaka, K. Senoo, S. Kohjiya, Polymer 48, 1171 (2007)

    Article  CAS  Google Scholar 

  67. S. Kohjiya, T. Tosaka, M. Furutani, S. Ikeda, Y. Toki, B.S. Hsiao, Polymer 48, 3801 (2007)

    Article  CAS  Google Scholar 

  68. M. Tosaka, K. Senoo, S. Kohjiya, Y. Ikeda, J. Appl. Phys. 101, 84909 (2007)

    Article  CAS  Google Scholar 

  69. Y. Ikeda, Y. Yasuda, K. Hijikata, M. Tosaka, S. Kohjiya, Macromolecules 41, 5876 (2008)

    Article  CAS  Google Scholar 

  70. Y. Ikeda, S. Kohjiya, Nihon Reoroji Gakkaishi 36, 9 (2011) (in Japanese)

    Google Scholar 

  71. Y. Ikeda, Nippon Gomu Kyokaishi 84, 29 (2011) (in Japanese)

    Article  CAS  Google Scholar 

  72. Y. Ikeda, Senni Gakkaishi 67, 43 (2011) (in Japanese)

    Google Scholar 

  73. S. Toki, The effect of strain-induced crystallization (SIC) on the mechanical properties of natural rubber (NR), in Chemistry, Manufacture and Applications of Natural Rubber, Chap. 5, ed. by S. Kohjiya, Y. Ikeda (Woodhead/Elsevier, Cambridge, 2014)

    Google Scholar 

  74. B. Huneau, Rubber Chem. Technol. 84, 425 (2011)

    Article  CAS  Google Scholar 

  75. K. Brüning, K. Schneider, S.V. Roth, G. Heinrich, Macromolecules 45, 7914 (2012)

    Article  CAS  Google Scholar 

  76. K. Brüning, K. Schneider, S.V. Roth, G. Heinrich, Polymer 72, 52 (2015)

    Article  CAS  Google Scholar 

  77. Y. Kitamura, K. Okada, H. Masunaga, M. Hikosaka, Polym. J. 51, 221 (2019)

    Article  CAS  Google Scholar 

  78. The Society of Polymer Science, Japan (ed.), Kobunshi Jiten (Asakura Shoten, Tokyo, 1988), p. 19 (in Japanese)

    Google Scholar 

  79. R.B. Merrifield, J. Am. Chem. Soc. 85, 2149 (1963)

    Article  CAS  Google Scholar 

  80. L.M. Gierasch, Biopolymers 84, 433 (2006)

    Article  CAS  PubMed  Google Scholar 

  81. L. Mandelkern, Biophys. Chem. 112(2–3), 109 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. E.A. DiMarzio, F.L. McCracking, J. Chem. Phys. 43, 539 (1965)

    Article  CAS  Google Scholar 

  83. R.J. Rubin, J. Chem. Phys. 43, 2392 (1965)

    Article  CAS  Google Scholar 

  84. Society of Rubber Industry, Japan (ed.), Gomu Gijutsu no Kiso, New edn. (Soc. Rubber Ind., Tokyo, 2002) (in Japanese)

    Google Scholar 

  85. A.J. Kinloch, R.J. Young, Rubbers, in Fracture Behaviour of Polymers, Chap. 10 (Springer, Dordrecht, 1995)

    Google Scholar 

  86. J.A.C. Harwood, A.R. Payne, J. Appl. Polym. Sci. 12, 889 (1968)

    Article  CAS  Google Scholar 

  87. S. Trabelsi, P.A. Albouy, J. Rault, Macromolecules 35, 10054 (2002)

    Article  CAS  Google Scholar 

  88. J.-B. Le Cam, B. Huneau, E. Verron, L. Gornet, Macromolecules 37, 5011 (2004)

    Article  CAS  Google Scholar 

  89. J.-B. Le Cam, E. Toussaint, Macromolecules 41, 7579 (2008)

    Article  CAS  Google Scholar 

  90. H. Zhang, A.K. Schltz, J. de Crevoisiert, F. Vion-Loisel, G. Besnard, A. Hexemer, H.R. Brown, E.J. Kramer, C. Creton, Macromolecules 45, 1529 (2012)

    Article  CAS  Google Scholar 

  91. P. Rublon, B. Huneau, N. Saintier, S. Beurrot, A. Leygue, E. Verron, C. Mocuta, D. Thiaudiere, D. Berghezan, J. Synchrotron Rad. 20, 105 (2013)

    Article  CAS  Google Scholar 

  92. S. Beurrot-Borgarino, B. Huneau, E. Verron, P. Rublon, Int. J. Fatigue 47, 1 (2013)

    Article  CAS  Google Scholar 

  93. K. Brüning, K. Schneider, S.V. Roth, G. Heinrich, Polymer 54, 6200 (2013)

    Article  CAS  Google Scholar 

  94. B. Huneau, I. Masquelier, Y. Marco, V. Le Saux, S. Noizet, C. Schiel, P. Charrier, Rubber Chem. Technol. 89, 126 (2016)

    Article  CAS  Google Scholar 

  95. S. Sun, D. Wang, T.P. Russell, L. Zhang, ACS Macro Lett. 5, 839 (2016)

    Article  CAS  Google Scholar 

  96. W. Mars, Measuring the durability benefit of strain-induced crystallization via crack arrest experiments. Paper presented at the 191st technical meeting of rubber division, American Chemical Society, Beachwood, OH, 25–27 Apr 2017

    Google Scholar 

  97. C. Creton, Q. Demassieux, D. Berghezan, Structure of field natural rubber near the tip of a fatigue crack. Paper presented at the 191st technical meeting of rubber division, American Chemical Society, Beachwood, OH, 25–27 Apr 2017

    Google Scholar 

  98. T. Karino, Y. Ikeda, Y. Yasuda, S. Kohjiya, M. Shibayama, Biomacromol 8, 693 (2007)

    Article  CAS  Google Scholar 

  99. Y. Ikeda, N. Higashitani, K. Hijikata, Y. Kokubo, Y. Morita, M. Shibayama, N. Osaka, T. Suzuki, H. Endo, S. Kohjiya, Macromolecules 42, 2741 (2009)

    Article  CAS  Google Scholar 

  100. T. Suzuki, N. Osaka, H. Endo, M. Shibayama, Y. Ikeda, H. Asai, N. Higashitani, Y. Kokubo, S. Kohjiya, Macromolecules 43, 1556 (2010)

    Article  CAS  Google Scholar 

  101. G. Kraus (eds.), Reinforcement of Elastomers (Interscience Publishers, New York, 1965)

    Google Scholar 

  102. W. Gonzalez-Vinas, H.L. Mancini, An Introduction to Materials Science (Princeton University Press, Princeton, 2004)

    Book  Google Scholar 

  103. S. Timoshenko, Elements of Strength of Materials, 5th edn. (Van Nostland Reinfold, New York, 1968)

    Google Scholar 

  104. J.G. Williams, Fracture Mechanics of Polymers (Ellis Horwood, Chichester, 1984)

    Google Scholar 

  105. A.A. Griffith, Phil. Trans. Roy. Soc. A221, 163 (1920)

    Google Scholar 

  106. R.S. Rivlin, A.G. Thomas, J. Polym. Sci. 10, 291 (1953)

    Google Scholar 

  107. T.L. Smith, J. Polym. Sci. A 1, 3597 (1963)

    Google Scholar 

  108. T.L. Smith, J. Appl. Phys. 35, 27 (1964)

    Article  Google Scholar 

  109. T.L. Smith, Polym. Eng. Sci. 5, 270 (1965)

    Article  Google Scholar 

  110. H. Hiratsuka, M. Hashiyama, S. Tomita, H. Kawai, J. Macromol. Sci., Phys. 8, 101 (1973)

    Google Scholar 

  111. H. Kawai, Rheol. Acta 14, 27 (1975)

    Article  CAS  Google Scholar 

  112. N. Sakumichi, K. Okumura, Sci. Rep. 7, 8065 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. P. Junkong, K. Cornish, Y. Ikeda, RSC Adv. 7, 50739 (2017)

    Article  CAS  Google Scholar 

  114. Y. Ikeda, P. Junkong, T. Ohashi, T. Phakkeeree, Y. Sakaki, A. Tohsan, S. Kohjiya, K. Cornish, RSC Adv. 6, 95601 (2016)

    Google Scholar 

  115. M. Behl, A. Lendlein, Mater. Today 10(4), 20 (2007)

    Article  CAS  Google Scholar 

  116. F. Pilate, A. Toncheva, P. Dubois, J.-M. Raquez, Eur. Polym. J. 80, 268 (2016)

    Article  CAS  Google Scholar 

  117. F. Katzenberg, J.C. Tiller, J. Polym. Sci. Part B Polym. Phys. 54, 1381 (2016)

    Google Scholar 

  118. Z. Xie, G. Sebald, D. Guyomar, Appl. Phys. Lett. 107, 081905 (2015)

    Article  CAS  Google Scholar 

  119. Z. Xie, G. Sebald, D. Guyomar, Appl. Phys. Lett. 108, 041901 (2016)

    Article  CAS  Google Scholar 

  120. Z. Xie, G. Sebald, D. Guyomar, Phys. Lett. A 381, 2112 (2017)

    Article  CAS  Google Scholar 

  121. J.H. Magill, Rubber Chem. Technol. 68, 507 (1995)

    Article  CAS  Google Scholar 

  122. C. Goodyear, Gum-Elastic and Its Varieties, with a Detailed Account of Its Application and Uses and of the Discovery of Vulcanization (Published for the author, New Haven, 1855)

    Google Scholar 

  123. B.K. Peirce, Trials of an Inventor: Life and Discoveries of Charles Goodyear (Reprinted from the 1866 edition by University Press of the Pacific, Honolulu, 2003)

    Google Scholar 

  124. A.G. Regli, Rubber’s Goodyear: The Story of a Man’s Perseverance (Julian Messner, New York, 1941)

    Google Scholar 

  125. C. Slack, Noble Obsession: Charles Goodyear, Thomas Hancock, and the Race to Unlock the Greatest Industrial Secret of the Nineteenth Century (Hyperion, New York, 2002)

    Google Scholar 

  126. R. Korman, The Goodyear Story: An Inventor’s Obsession and the Struggle for a Rubber Monopoly (Encounter Books, San Francisco, 2002)

    Google Scholar 

  127. C.O. Weber, The Chemistry of India Rubber, Including the Outline of a Theory on Vulcanisation (Charles Griffin & Co., London, 1902)

    Google Scholar 

  128. B.N. Zimmerman (ed.), Vignettes from the International Rubber Science Hall of Fame (1958–1988): 36 Major Contributors to Rubber Science (Rubber Division, American Chemical Society, Akron, 1989)

    Google Scholar 

  129. A. Stevenson, R. Campion, in Engineering with Rubber: How to Design Rubber Compounds, 2nd edn., ed. by A.G. Gent (Hanser, Munich, 2001), p. 192

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohjiya, S., Kato, A., Ikeda, Y. (2020). Self-Reinforcement in Natural Rubber (NR): Template Crystallization. In: Reinforcement of Rubber. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-3789-9_8

Download citation

Publish with us

Policies and ethics