Skip to main content

Rubber Reinforcement with Lignin

  • Chapter
  • First Online:
Reinforcement of Rubber

Abstract

Lignin has been one of the biomass to be utilized more effectively from the viewpoint of sustainable development. In spite of the increasing interest in lignin wastes, a few industrialization of the lignin has been successful. Here, lignin as a rubber reinforcing filler is evaluated, and a soft processing method of lignin-loaded rubber vulcanizates is proposed. The traditional rubber processing, which is a highly mechanical method, has not worked well for the powdered lignin as a rubber compounding ingredient. Some ideas on the soft processing method of rubber–lignin mixtures are suggested for further developmental research. If in success, unique bionanocomposites are to be prepared, when natural rubber is employed as a matrix rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. MacGregor, C.T. Greenwood, Rubber in lignin, in Polymer in Nature (Wiley, Chichester, 1980)

    Google Scholar 

  2. T.M. Garver, S. Sarkanen, Kraft lignin: a new perspective, in Renewable-Resource Materials: New Polymer Sources, Chap. 23, ed. by C.E. Carraher Jr., L.H. Sperling (Plenum Press, New York, 1986)

    Google Scholar 

  3. W.G. Glasser, S. Sarkanen, in Lignin: Properties and Materials. ACS Symposium Series, vol. 397 (American Chemical Society, Washington, D.C., 1989)

    Google Scholar 

  4. J.H. Lora, W.G. Glasser, J. Polym. Environ. 10, 39 (2002)

    Article  CAS  Google Scholar 

  5. G. Gellerstedt, Ind. Crops Prod. 77, 845 (2015)

    Article  CAS  Google Scholar 

  6. A. Kawaoka, K. Nanto, K. Sugita, S. Endo, K. Yamada-Watanabe, E. Matsunaga, H. Ebinuma, Prog. Biotechnol. 18, 205 (2001)

    CAS  Google Scholar 

  7. J.J. Keilen, A. Pollak, Ind. Eng. Chem. 39, 480 (1947)

    Article  CAS  Google Scholar 

  8. J.J. Keilen, W.K. Dougherty, W.R. Cook, Ind. Eng. Chem. 44, 163 (1952)

    Article  CAS  Google Scholar 

  9. T.R. Griffith, D.W. MacGregor, Ind. Eng. Chem. 45, 380 (1953)

    Article  CAS  Google Scholar 

  10. F.J. Tibenham, N.S. Grace, Ind. Eng. Chem. 46, 824 (1954)

    Article  CAS  Google Scholar 

  11. Anon, Lignin filler for tires. Chem. Eng. News 35(June 3 issue), 28 (1957)

    Google Scholar 

  12. R. Mikawa, S. Wada, in Gosei Gomu Handobukku, ed. by S. Kanbara, K. Kawasaki, M. Kitajima, M. Furuya (Asakura Shoten, Tokyo, 1960), p. 332 (in Japanese)

    Google Scholar 

  13. S. Yamashita, S. Kohjiya, in Wood Processing and Utilization, Chap. 23, ed. by J.F. Kennedy, G.O. Phillips, P.A. Williams (Ellis Horwood, Chichester, 1989)

    Google Scholar 

  14. A. Kato, A. Tohsan, S. Kohjiya, T. Phakkeeree, P. Phinyocheep, Y. Ikeda, Manufacturing and structure of rubber nanocomposites, in Progress in Rubber Nanocomposites, Chap. 12, ed. by S. Thomas, H.J. Maria (Woodhead/Elsevier, Duxford, 2017)

    Google Scholar 

  15. J. Zakzeski, P.C.A. Bruijnincx, A.L. Jongerious, B.M. Weckhuysen, Chem. Rev. 110, 3552 (2010)

    Article  CAS  Google Scholar 

  16. R. Orlando, S. Jean-Louis, Tappi J. 77, 123 (1994)

    Google Scholar 

  17. K. Amel, J. Ahmed, C. Moncef, Cem. Concr. Res. 33, 995 (2003)

    Article  Google Scholar 

  18. A. Nadif, D. Hunkeler, P. Kӓuper, Bioresour. Technol. 84, 49 (2002)

    Article  CAS  Google Scholar 

  19. A. Gandini, M.N. Belgacem, Lignins as components of macromolecular materials, in Monomers, Oligomers, Polymers and Composites from Renewable Resources, Chap. 11, ed. by M.N. Belgacem, A. Gandini (Elsevier, Oxford, 2008)

    Google Scholar 

  20. G. Gellerstedt, P. Tomani, P. Axegård, B. Backlund, Lignin recovery and lignin-based products, in Integrated Forest Biorefineries, Chap. 8, ed. by L.P. Christopher (RSC Pub., Cambridge, 2013)

    Google Scholar 

  21. V.K. Thakur, M.K. Thakur, P. Raghavan, M.R. Kessler, ACS Sustain. Chem. Eng. 2, 1072 (2014)

    Article  CAS  Google Scholar 

  22. W.R. Cline, The Economics of Global Warming (Institute for International Economics, Washington, DC, 1992)

    Google Scholar 

  23. S. Solomon, G.-K. Plattner, R. Knutti, P. Friedlingstein, Proc. Natl. Acad. Sci. USA 106, 1704 (2009)

    Article  CAS  Google Scholar 

  24. National Research Council of the National Academy of the United States of America, Climate Change: Evidence, Impact, and Choices (National Academies Press, Washington, DC, 2012)

    Google Scholar 

  25. R.K. Pachauri, L. Meyer (eds.), Climate Change 2014: Synthesis Report (IPCC, Geneva, 2015) (Available at IPCC (Intergovernmental Panel on Climate Change) home page)

    Google Scholar 

  26. S. Ikkatai, Japan’s Choice at the Low-Carbon Age (Iwanami Shoten, Tokyo, 2008) (in Japanese)

    Google Scholar 

  27. R.I. Block, A.D. Kopp, A. Limi, Turning the Right Corner: Ensuring Development through a Low-Carbon Transport Sector (World Bank, Washington, DC, 2013) (World Bank, Report No. 78086, available at the World Bank home page)

    Google Scholar 

  28. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev. 112, 724 (2012)

    Article  CAS  Google Scholar 

  29. International Energy Agency (IEA), 20 Years of Carbon Capture and Storage (IEA, 15 Nov 2016) (Available at IEA home page)

    Google Scholar 

  30. Searching engine, Scifinder; Key words; rubber/lignin/composite (20 July 2019)

    Google Scholar 

  31. A.J. Ragauskas, G.T. Beckham, M.J. Biddy, R. Chandra, F. Chen, M.F. Davis, B.H. Davison, R.A. Dixon, P. Gilna, M. Keller, P. Langan, A.K. Naskar, J.N. Saddler, T.J. Tschaplinski, G.A. Tuskan, C.E. Wyman, Science 344, 1246843 (2014)

    Article  Google Scholar 

  32. A. Duval, M. Lawoko, React. Funct. Polym. 85, 78 (2014)

    Article  CAS  Google Scholar 

  33. D.C. Blackley, High Polymer Latices: Their Science and Technology, vols. 1 & 2 (Maclaren & Sons, London, 1966)

    Google Scholar 

  34. J. d’Auzac, J.-L. Jacob, H. Chrestin (eds.), Physiology of Rubber Tree Latex (CRC Press, Boca Raton, 1989)

    Google Scholar 

  35. D. Premakumari, A.O.N. Panikkar, Anatomy and ultracytology of latex, in Natural Rubber: Biology, Cultivation and Technology, Chap. 4, ed. by M.R. Sethuraj, N.M. Mathew (Elsevier, Amsterdam, 1992)

    Google Scholar 

  36. J.L. Jacob, J.C. Prevot, Metabolism of the laticiferous system and its biochemical regulation, in Natural Rubber: Biology, Cultivation and Technology, Chap. 6, ed. by M.R. Sethuraj, N.M. Mathew (Elsevier, Amsterdam, 1992)

    Google Scholar 

  37. D. Wititsuwannakul, R. Wititsuwannakul, Biochemistry of natural rubber and structure of latex, in Biopolymers. Polyisoprenoids, vol. 2, Chap. 6, ed. by T. Koyama, A. Steinbuechel (Wiley-VCH, Weinheim, 2001)

    Google Scholar 

  38. I. Sagajllo, Rubber Chem. Technol. 30, 639 (1957)

    Article  Google Scholar 

  39. M.G. Kumaran, S.K. De, J. Appl. Polym. Sci. 22, 1885 (1978)

    Article  CAS  Google Scholar 

  40. B. Košíková, A. Gregorová, A. Osvald, J. Krajčovičová, J. Appl. Polym. Sci. 103, 1226 (2007)

    Article  Google Scholar 

  41. C. Jiang, H. He, H. Jiang, L. Ma, D. M. Jia, Express Polym. Lett. 7, 480 (2013)

    Google Scholar 

  42. T. Phakkeeree, S. Kittipoom, S. Kohjiya, P. Phinyocheep, Y. Ikeda, PACCON2009 Abstracts (Phitsanulok, Thailand, 14–16 Jan 2009), Lecture no. S10-OR-8, p. 93

    Google Scholar 

  43. T. Phakkeeree, Y. Ikeda, H. Yokohama, P. Phinyocheep, R. Kitano, A. Kato, J. Fiber Sci. Technol. 72, 160 (2016)

    Article  Google Scholar 

  44. K. Pal, S.K. Pal, C.K. Das, J.K. Kim, Elastomeric nanocomposites for tyre applications, in Recent Advances in Elastomeric Nanocomposites, ed. by V. Mittal, J.K. Kim, K. Pal (Springer, Berlin, 2011), p. 201

    Google Scholar 

  45. Y. Ikeda, T. Phakkeeree, P. Junkong, H. Yokohama, P. Phinyocheep, R. Kitano, A. Kato, RSC Adv. 7, 5222 (2017)

    Article  CAS  Google Scholar 

  46. A. Tohsan, P. Phinyocheep, S. Kittipoom, W. Pattanasiriwisawa, Y. Ikeda, Polym. Adv. Technol. 23, 1335 (2012)

    Article  CAS  Google Scholar 

  47. World Commission on Environment and Development, Our Common Future (Oxford University Press, Oxford, 1987)

    Google Scholar 

  48. R. Hoefer (eds.), Sustainable Solutions for Modern Economics (RSC Publishing, Cambridge, 2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kohjiya, S., Kato, A., Ikeda, Y. (2020). Rubber Reinforcement with Lignin. In: Reinforcement of Rubber. Springer Series on Polymer and Composite Materials. Springer, Singapore. https://doi.org/10.1007/978-981-15-3789-9_7

Download citation

Publish with us

Policies and ethics