Skip to main content

Integrating Omics and Microbial Biotechnology for the Production of Biofuel

  • Chapter
  • First Online:
Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

Renewable energy sources are being found around the world which replaces the increasing demand and using up of fossil fuels. Many microalgae species generate necessary and sufficient quantities of polysaccharides, hydrocarbons, and other useful products. However, in comparison to non-renewable production from fossil fuels, the manufacturing of large-scale algal products is not a simple process. It has been seen that microalgae is naturally to be more effective in producing compounds that can replace fossil fuels. However, to make the process economically feasible, it requires optimization of the strains through genetic engineering and systems biology tools. The strain improvement can also be done with the help of metabolic engineering which is part of microbial biotechnology, which may enhance the productivity of the microorganism. Recently bioinformatics and systems biology tools explored the algal genome sequencing which can also help us to deeply understand the metabolic system of the algae to produce the renewable compounds and to optimize biofuel production. The present review article focused on major computational tools and approaches developed can encourage us to identify target genes, pathways, and reactions of particular interest to biofuel production in algae. Since the use of these tools and methods in algal biofuel studies has not been completely adopted, the aim of this review is to discuss how to utilize the system biology approach and metabolic engineering for future implementation in algal research in the production of algal biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam F, Date A, Rasjidin R, Mobin S, Moria H, Baqui A (2012) Biofuel from algae -is it a viable alternative? Proc Eng 49:221–227

    Article  CAS  Google Scholar 

  • Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution and metabolism. Science 306:79–86

    Article  CAS  PubMed  Google Scholar 

  • Artimo P, Jonnalagedda M, Arnold K et al (2012) ExPASy: SIB bioinformatics resource portal. Nucl Acids Res 40:W597–W603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber AP (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137:460–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2:727–738

    Article  CAS  PubMed  Google Scholar 

  • Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for bio hydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Duncan G, Agarkova I et al (2010) The Chlorella variabilis NC64A reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanc G, Agarkova I, Grimwood J et al (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13:R39–R51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bodjui OA, Emmanuel AO, Moussa B, Loissi K (2019) Microalgae to biofuels production: a review on cultivation, application and renewable energy. Rev Environ Health 34:91–99

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Bowler C, Allen AE, Badger JH et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 465:239–244

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and coproducts. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cao M, Yuan XL, Bi G (2016) Complete sequence and analysis of plastid genomes of Pseudo-nitzschia multiseries (Bacillariophyta). Mitochondrial DNA Part A DNA Mapp Seq Anal 27:2897–2898

    Article  CAS  Google Scholar 

  • Caspi R, Altman T, Billington R et al (2014) The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome databases. Nucl Acids Res 42:D459–D471

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Zhang X, Guan X, Ding L, Li Y, Wang M et al (2008) Fatty acid biosynthesis in eukaryotic photosynthetic microalgae: identification of a microsomal delta 12 desaturase in Chlamydomonas reinhardtii. J Microbiol 46:189–201

    Article  CAS  PubMed  Google Scholar 

  • Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, Chang J-S (2018) Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol J 13:1–31

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Cock JM, Sterck L, Rouze P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  CAS  PubMed  Google Scholar 

  • Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave FA, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Salvador C-G, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Silva CD, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CMM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Collén PN, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. PNAS 110:5247–5252

    Article  PubMed  PubMed Central  Google Scholar 

  • Consortium TU (2011) Ongoing and future developments at the universal protein resource. Nucl Acids Res 39:D214–D219

    Article  CAS  Google Scholar 

  • Crof D, O’Kelly G, Wu G et al (2011) Reactome: a database of reactions, pathways and biological processes. Nucl Acids Res 39:D691–D697

    Article  CAS  Google Scholar 

  • Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65

    Article  CAS  PubMed  Google Scholar 

  • Derelle E, Ferraz C, Rombaut S et al (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci USA 103:11647–11652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devoid S, Overbeek R, DeJongh M et al (2013) Automated genome annotation and metabolic model reconstruction in the SEED and model SEED. Methods Mol Biol 985:17–45

    Google Scholar 

  • Dorrell RG, Smith AG (2011) Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell 10:856–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae in current research. In: Mendez-Vilas A (ed) Technology and education topics in applied microbiology and microbial biotechnology. Formatex, Madrid, pp 1355–1366

    Google Scholar 

  • Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335

    Article  CAS  PubMed  Google Scholar 

  • Glockner G, Rosenthal A, Valentine K (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51:382–390

    Article  CAS  PubMed  Google Scholar 

  • Gobler CJ, Berry DL, Dyhrman ST et al (2011) Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA 108:4352–4357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman AR (2005) Paths towards algal genomics. Plant Physiol 137:410–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guarnieri MT, Nag A, Smolinski SL, Darzins A, Seibert M, Pienkos PT (2011) Examination of triacylglycerol biosynthetic pathways via de novo transcriptomic and proteomic analyses in an unsequenced microalgae. PLoS One 6:1–13

    Article  CAS  Google Scholar 

  • Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the revolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Yoshizawa AC, Okuda S, Kuma K, Goto S, Kanehisa M (2008) The repertoire of desaturases and elongases reveals fatty acid variations in 56 eukaryotic genomes. J Lipid Res 49:183–191

    Article  CAS  PubMed  Google Scholar 

  • Hong L, Liu JL, Midoun SZ, Miller PC (2017) Transcriptome sequencing and annotation of the halophytic microalga Dunaliella salina. J Zhejiang Univ Sci B 18:833–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • http://www.iea.org/topics/renewables/subtopics/bioenergy/

  • http://www.nrel.gov/learning/re_biofuels.html

  • Hu Q, Sommerfeld M, Jarvis E et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • IEA, Technology Roadmap: Biofuels for Transport. [Online]. International Energy Agency (2011). Available at: http://www.iea.org/papers/2011/biofuels_roadmap.pdf [July 29, 2011].

  • Izallalen M, Mahadevan R, Burgard A et al (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267–275

    Google Scholar 

  • Izallalen M, Mahadevan R, Burgard A et al (2008) Geobacter sulfurreducens strain engineered for increased rates of respiration. Metab Eng 10:267–275

    Article  CAS  PubMed  Google Scholar 

  • Jain K, Krause K, Grewe F, Nelson GF, Weber AP, Christensen AC, Mower JP (2014) Extreme features of the Galdieria sulphuraria organellar genomes: a consequence of polyextremophily? Genome Biol Evol 7:367–380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jorquera O et al (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucl Acids Res 40:D109–D114

    Article  CAS  PubMed  Google Scholar 

  • Karp PD, Paley SM, Krummenacker M et al (2009) Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Briefings Bioinf 11:40–79

    Article  CAS  Google Scholar 

  • Khan MI, Shin JH, Kim JD (2018) The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb Cell Fact 17:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Koskimaki JE, Blazier AS, Clarens AF, Papin JA (2013) Computational models of algae metabolism for industrial applications. Ind Biotechnol 9:185–195

    Article  CAS  Google Scholar 

  • Koussa J, Chaiboonchoe A, Salehi-Ashtiani K (2014) Computational approaches for microalgal biofuel optimization: a review. BioMed Res Int, 12 p

    Google Scholar 

  • Kowallik KV, Stoebe B, Schaffran I, Kroth-Pancic P, Freier U (1995) The chloroplast genome of a chlorophyll a+c containing alga, Odontella sinensis. Plant Mol Biol Rep 13:336–342

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690

    Article  CAS  PubMed  Google Scholar 

  • Lanier W, Moustafa A, Bhattacharya D, Comeron JM (2008) EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 14:2171

    Article  CAS  Google Scholar 

  • Lei A, Chen H, Shen G, Hu Z, Chen L, Wang J (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:18–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24:815–820

    CAS  PubMed  Google Scholar 

  • Liu B, Benning C (2012) Lipid metabolism in microalgae distinguishes itself. Curr Opin Biotechnol 24:1–10

    Article  CAS  Google Scholar 

  • Lopez D, Casero D, Cokus SJ, Merchant SS, Pellegrini M (2011) Algal functional annotation tool: a web-based analysis suite to functionally interpret large gene lists using integrated annotation and expression data. BMC Bioinf 12:282

    Article  Google Scholar 

  • Mario S, Ana T, Burkhard M (2006) AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol 7:S1–S11

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsuzaki M, Misumi O, Shin-i T et al (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  CAS  PubMed  Google Scholar 

  • Merchant SS, Prochnik SE, Vallon O et al (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchant SS et al (2012) TAG, you’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:352–363

    Article  CAS  PubMed  Google Scholar 

  • Misra N, Panda PK, Parida BK, Mishra BK (2012) Phylogenomic study of lipid genes involved in microalgal biofuel production—Candidate gene mining and metabolic pathway analyses. Evol Bioinform 8:545–564

    Article  CAS  Google Scholar 

  • Misra N, Panda PK, Parida BK (2013) Agrigenomics for microalgal biofuel production: an overview of various bioinformatics resources and recent studies to link OMICS to bioenergy and bioeconomy. OMICS 17:537–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y, Kuroiwa T (2008) Genome analysis and its significance in four unicellular algae, Cyanidioschyzon merolae, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. J Plant Res 121:3–17

    Article  CAS  PubMed  Google Scholar 

  • Mock T, Otillar RP, Strauss J, McMullan M, Paajanen P, Schmutz J et al (2017) Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 541:536–540

    Article  CAS  PubMed  Google Scholar 

  • Moreau H, Verhelst B, Couloux A et al (2012) Gene functionalities and genome structure in Bathycoccus prasinos reflect cellular specializations at the base of the green lineage. Genome Biol 13:R74–R90

    Article  PubMed  PubMed Central  Google Scholar 

  • Mukhopadhyay A, Redding AM, Rutherford BJ, Keasling JD (2008) Importance of systems biology in engineering microbes for biofuel production. Curr Opin Biotechnol 19:228–234

    Article  CAS  PubMed  Google Scholar 

  • Nguyen HM, Baudet M, Cuine S et al (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  PubMed  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37(52):68

    Google Scholar 

  • O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161:971–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oberhardt MA, Palsson BO, Papin JA (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  PubMed Central  Google Scholar 

  • Palenik B, Grimwood J, Aerts A et al (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci USA 104:7705–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passell H et al (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manage 129:103–111

    Article  CAS  PubMed  Google Scholar 

  • Prochnik SE, Umen J, Nedelcu AM et al (2010) Genomic analysis of complexity in the multicellular green alga Volvox carteri. Science 329:223–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radakovits R, Jinkerson RE, Fuerstenberg SI et al (2012) Draft genome sequence and genetic transformation of the oleaginous alga: Nannochloropsis gaditana. Nat Commun 3:686–711

    Article  PubMed  CAS  Google Scholar 

  • Rainaldi G, Volpicella M, Licciulli F, Liuni S, Gallerani R, Ceci LR (2003) PLMItRNA, a database on the heterogeneous genetic origin of mitochondrial tRNA genes and tRNAs in photosynthetic eukaryotes. Nucl Acids Res 31:436–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reijnders MJMF, van Heck RGA, Lam CMC, Scaife MA, Martins dos Santos VAP, Smith AG, Schaap PJ (2014) Green genes: bioinformatics and systems-biology innovations drive algal biotechnology. Trends Biotechnol 32:617–626

    Article  CAS  PubMed  Google Scholar 

  • Reith M, Munholland J (1995) Complete nucleotide sequence of the Porphyra purpurea chloroplast genome. Plant Mol Biol Rep 13:333–335

    Article  CAS  Google Scholar 

  • Riekhof WR, Sears BB, Benning C (2005) Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: Discovery of the betaine lipid synthase BTA1Cr. Eukaryot Cell 4:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rismani-Yazdi H, Haznedaroglu BZ, Bibby K, Peccia J (2011) Transcriptome sequencing and annotation of the microalgae Dunaliella tertiolecta: pathway description and gene discovery for production of next-generation biofuels. BMC Genomics 12:148–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robbens S, Derelle E, Ferraz C, Wuyts J, Moreau H, Van de Peer Y (2007) The complete chloroplast and mitochondrial DNA sequence of Ostreococcus tauri: organelle genomes of the smallest eukaryote are examples of compaction. Mol Biol Evol 24:956–968

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Moya M, Gonzalez R (2010) Systems biology approaches for the microbial production of biofuels. Biofuels 1:291–310

    Article  CAS  Google Scholar 

  • Sato N, Moriyama T (2007) Genomic and biochemical analysis of lipid biosynthesis in the unicellular rhodophyte Cyanidioschyzon merolae: lack of a plastidic desaturation pathway results in the coupled pathway of galactolipid synthesis. Eukaryot Cell 6:1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberger J, Park JO, Conrad TM, Palsson BT (2010) BiGG: a biochemical genetic and genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinf 11:213

    Article  CAS  Google Scholar 

  • Schellenberger J, Que R, Fleming RMT et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6:1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E et al (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Schomburg I, Chang A, Placzek S et al (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucl Acids Res 41:D764–D772

    Article  CAS  PubMed  Google Scholar 

  • Scott SA et al (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Smith DR, Lee RW, Cushman JC, Magnuson JK, Tran D, Polle JEW (2010) The Dunaliella salina organelle genomes: large sequences, inflated with intronic and intergenic DNA. BMC Plant Biol 10:83–97

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith SR, Abbriano RM, Hildebrand M (2012) Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon portioning pathways. Algal Res 1:2–16

    Article  CAS  Google Scholar 

  • Stirewalt VL, Michalowski CB, Loffelhardt W, Bohnert HJ, Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13:327–332

    Article  CAS  Google Scholar 

  • Tirichine L, Bowler C (2011) Decoding algal genomes: tracing back the history of photosynthetic life on earth. Plant J 66:45–57

    Article  CAS  PubMed  Google Scholar 

  • Torleifsson SG, Tiele I (2011) rBioNet: a COBRA toolbox extension for reconstructing high-quality biochemical networks. Bioinformatics 27:2009–2010

    Article  CAS  Google Scholar 

  • Turmel M, Otis C, Lemieux C (1999) The complete chloroplast DNA sequence of the green alga Nephroselmis olivaceae: insights into the architecture of ancestral chloroplast genomes. Proc Natl Acad Sci USA 96:10248–10253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the chlorophyte Chaetosphaeridium globosum: Insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unified Bioenergy Terminology (2004) Food and Agricultural Organization of (FAO) the United Nations. Page 9

    Google Scholar 

  • Usaite R, Patil KR, Grotkjær T, Nielsen J, Regenberg B (2006) Global transcriptional and physiological responses of Saccharomyces cerevisiae to ammonium, L-alanine, or L-glutamine limitation. Appl Environ Microbiol 72:6194–6203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela J, Mazurie A, Carlson RP et al (2012) Potential role of multiple carbon fixation pathways during lipid accumulation in Phaeodactylum tricornutum. Biotechnol Biofuels 5:40–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss TL, Johnston JS, Fujisawa K et al (2010) Phylogenetic placement, genome size, and GC content of the liquid-hydrocarbon-producing green microalga Botryococcus braunii strain Berkeley (SHOWA) Chlorophyta. J Phycol 46:534–540

    Article  CAS  Google Scholar 

  • Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP (2011) Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J Appl Phycol 23:833–839

    Article  Google Scholar 

  • Wijffels RH et al (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4:287–295

    Article  CAS  Google Scholar 

  • Worden AZ, Lee JH, Mock T et al (2009) Evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes micromonas. Science 324:268–272

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz LS, Albertha JM (2017) Walhout metabolic network modeling with model organisms. Curr Opin Chem Biol 36:32–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WL, Ansari W, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:91–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zelle RM, de Hulster E, van Winden WA et al (2008) Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol 74:2766–2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Hua Q (2015) Applications of genome-scale metabolic models in biotechnology and systems medicine. Front Physiol 6:413

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kirtipal, N., Shanker, A. (2020). Integrating Omics and Microbial Biotechnology for the Production of Biofuel. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_9

Download citation

Publish with us

Policies and ethics