Skip to main content

Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management

  • Chapter
  • First Online:
Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

Increasing energy demands and the rising global carbon footprint are forcing mankind to look for alternative green fuels. Fuels derived from biological sources are considered to be green fuels since they do not release toxic pollutants upon combustion. The global accumulation of the carbon footprint and accelerated demands on energy are pushing us to look for alternative green fuels based on renewable resources. Hence, identification of potential sources of green fuels produced by biological means and utilization of these resources for commercialization provide the context of the priorities for future energy needs. The two major concepts considered for next-generation green fuels are (i) fuels that do not increase the carbon footprint (e.g. hydrogen fuel) and (ii) utilization of photosynthetic processes to fix CO2 and produce biofuels. Keeping these two priorities in mind, this chapter provides a detailed discussion of various biofuels available for mankind, which can replace traditional hydrocarbon-based fossil fuels. These biofuels could help in reducing the global carbon footprint. The chapter gives information about the various biological sources for production of biodiesel and microbial sources for production of liquid fuels. This chapter also discusses the concept of microbial fuel cells, the importance of biohydrogen, aspects of molecular engineering of organisms to enhance productivity, fabrication of microbial systems for production of biofuels and the prospects for biofuel production by utilizing modern biotechnology tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alper H, Moxley J, Nevoigt E, Fink GR, Stephanopoulos G (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314:1565–1568

    Article  CAS  PubMed  Google Scholar 

  • Amaro HM, Guedes AC, Malcata FX (2011) Advances and perspectives in using microalgae to produce biodiesel. Appl Energy 88:3402–3410

    Article  CAS  Google Scholar 

  • Angelaalincy MJ, Navanietha Krishnaraj R, Shakambari G, Ashokkumar B, Kathiresan S, Varalakshmi P (2018) Biofilm engineering approaches for improving the performance of microbial fuel cells and bioelectrochemical systems. Front Energy Res 6

    Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–89

    Article  CAS  PubMed  Google Scholar 

  • Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Verma P (2016) Microbial fuel cell: a green approach for the utilization of waste for the generation of bioelectricity. Bioresour Bioproc 3:38

    Article  Google Scholar 

  • Chen J-S, Hiu SF (1986) Acetone-butanol-isopropanol production by Clostridium beijerinckii (synonym, Clostridium butylicum). Biotechnol Lett 8:371–376

    Article  CAS  Google Scholar 

  • Chen Z, Wang L, Qiu S, Ge S (2018) Determination of microalgal lipid content and fatty acid for biofuel production. Bio Med Res Int 2018:1503126–1503126

    Google Scholar 

  • Chiu S-Y, Kao C-Y, Chen C-H, Kuan T-C, Ong S-C, Lin C-S (2008) Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresour Technol 99:3389–3396

    Article  CAS  PubMed  Google Scholar 

  • Choi YJ, Lee SY (2013) Microbial production of short-chain alkanes. Nature 502:571–574

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111:8931–8936

    Article  CAS  PubMed  Google Scholar 

  • Costa JAV, Freitas BCB, Santos TD, Mitchell BG, Morais MG (2019) Chapter 9 - Open pond systems for microalgal culture. In: Pandey A, Chang J-S, Soccol CR, Lee D-J, Chisti Y (eds) Biofuels from Algae, 2nd edn. Elsevier, pp 199–223

    Google Scholar 

  • Demirbas A (2005) Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci 31:466–487

    Article  CAS  Google Scholar 

  • El-Shishtawy RMA, Kawasaki S, Morimoto M (1997) Biological H2 production using a novel light-induced and diffused photoreactor. Biotechnol Tech 11:403–407

    Article  CAS  Google Scholar 

  • Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

    Article  CAS  PubMed  Google Scholar 

  • Farooq W, Lee Y-C, Han J-I, Darpito CH, Choi M, Yang J-W (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15:749–755

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Chaudhary D, Reddy M, Rao S, Chikara J, Pandya J, Patolia J, Gandhi M, Subbarayappa A, Vaghela N, Mishra S, Rathod D, Prakash A, Shethia B, Upadhyay S, Balakrishna V, Prakash R, Ghosh P (2007) Prospects for Jatropha methyl ester (biodiesel) in India. Int J Environ Stud 64

    Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hazelwood LA, Daran J-M, van Maris AJA, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D-Y, Vijayan D, Ramasamy P, Han J-I, Lee K, Park J-Y, Chang W-S, Lee J-S, Oh Y-K (2015) Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour Technol 199:300–310

    Article  PubMed  CAS  Google Scholar 

  • Kovács KL, Maróti G, Rákhely G (2006) A novel approach for biohydrogen production. Int J Hydrog Energy 31:1460–1468

    Article  CAS  Google Scholar 

  • Kracke F, Vassilev I, Kromer JO (2015) Microbial electron transport and energy conservation—the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575

    Article  PubMed  PubMed Central  Google Scholar 

  • Kremer TA, LaSarre B, Posto AL, McKinlay JB (2015) N2 gas is an effective fertilizer for bioethanol production by Zymomonas mobilis. Proc Natl Acad Sci 112:2222–2226

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol 8:450–450

    PubMed  PubMed Central  Google Scholar 

  • Lam FH, Ghaderi A, Fink GR, Stephanopoulos G (2014) Engineering alcohol tolerance in yeast. Science 346:71–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Mi L, Pontrelli S, Luo S (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    Article  CAS  PubMed  Google Scholar 

  • Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694

    Article  CAS  Google Scholar 

  • Mastan SG, Sudheer PD, Rahman H, Reddy MP, Chikara J (2012) Development of SCAR marker specific to non-toxic Jatropha curcas L. and designing a novel multiplexing PCR along with nrDNA ITS primers to circumvent the false negative detection. Mol Biotechnol 50:57–61

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98:1260–1264

    Article  CAS  PubMed  Google Scholar 

  • Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777

    Article  CAS  PubMed  Google Scholar 

  • Rahman H (2012) Jatropha biodiesel: aprospective renewable resource for energy management, p 18

    Google Scholar 

  • Reddy M, Sudheer PDVN (2010) Biology and biotechnological advances in Jatropha curcas—a biodiesel plant. In: Ramawat KG (ed) Desert plants: biology and biotechnology. Springer, Berlin, pp 57–71

    Chapter  Google Scholar 

  • Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha–palm biodiesel blends: an optimum mix for Asia. Fuel 86:1365–1371

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43

    Article  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21:277–286

    Article  CAS  PubMed  Google Scholar 

  • Seo JY, Praveenkumar R, Kim B, Seo J-C, Park J-Y, Na J-G, Jeon SG, Park SB, Lee K, Oh Y-K (2016) Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant–decorated Fe3O4 nanoparticles. Green Chem 18:3981–3989

    Article  CAS  Google Scholar 

  • Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315:801–804

    Article  CAS  PubMed  Google Scholar 

  • Sudheer P, Seo D, Kim EJ, Chauhan S, Chunawala JR, Choi KY (2018) Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzym Microb Technol 119:45–51

    Article  CAS  Google Scholar 

  • Sudheer PD, Rahman H, Mastan SG, Reddy MP (2010) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793

    Article  CAS  PubMed  Google Scholar 

  • Sudheer PDVN, Mastan SG, Rahman H (2012) Jatropha biodiesel: a prospective renewable resource for energy management. In: Rocco AM, Levin JE (eds) Focus on energy management. Nova Science, New York, pp 71–88

    Google Scholar 

  • Sudheer PDVN, Yun J, Chauhan S, Kang TJ, Choi K-Y (2017) Screening, expression, and characterization of Baeyer–Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnol Bioprocess Eng 22:717–724

    Article  CAS  Google Scholar 

  • Tsai S-L, Oh J, Singh S, Chen R, Chen W (2009) Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75:6087–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuck CO, Pérez E, Horváth IT, Sheldon RA, Poliakoff M (2012) Valorization of biomass: deriving more value from waste. Science 337:695–699

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Yamada R, Taniguchi N, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Cocktail δ-integration: a novel method to construct cellulolytic enzyme expression ratio-optimized yeast strains. Microb Cell Factories 9:32

    Article  CAS  Google Scholar 

  • Yanase H, Miyawaki H, Sakurai M, Kawakami A, Matsumoto M, Haga K, Kojima M, Okamoto K (2012) Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol 94:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Fei Q, Zhang Y, Contreras LM, Utturkar SM, Brown SD, Himmel ME, Zhang M (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9:699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yvon-Durocher G, Allen AP, Bastviken D, Conrad R, Gudasz C, St-Pierre A, Thanh-Duc N, del Giorgio PA (2014) Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507:488–491

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Eddy C, Deanda K, Finkelstein M, Picataggio S (1995) Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267:240–243

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Wang T, Zhou W, Jia X, Wang H (2013) Use of a Tn5-based transposon system to create a cost-effective Zymomonas mobilis for ethanol production from lignocelluloses. Microb Cell Factories 12:41

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DBT (Department of Biotechnology) India for funding under the Ramalingaswami Re-entry Fellowship (Project # AUR002), and thank Prof. Rajendra Kumar Pandey (Vice-Chancellor, Amity University Chhattisgarh, Raipur) and Dr. Ravi Kanth Singh (Director, Amity Institute of Biotechnology) for their kind support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamidimarri D. V. N. Sudheer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chauhan, S., Velramar, B., Soni, R.K., Mishra, M., Sudheer, P.D.V.N. (2020). Biofuels: Sources, Modern Technology Developments and Views on Bioenergy Management. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_8

Download citation

Publish with us

Policies and ethics