Skip to main content

Microbial Biofuels: An Economic and Eco-Friendly Approach

  • Chapter
  • First Online:
Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

Biofuels in recent years have turned out as an environment friendly and cost-effective approach to sustain the rising demand of energy for the growing population. Development of efficient methods for biofuel production using plants and microbes has gained considerable attention. Thus, a different generation of biofuels, i.e. first generation, second generation, third generation, fourth generation, and currently next generation of biofuels has evolved. Each generation overcame the limitations of the earlier generation and differs basically in the substrate being used for the production. For efficient biofuel production researchers and companies have evolved various methods and compositions and acquired respective patents. Also, machineries involved in biofuel production have evolved over time at the laboratory as well as the industrial level. Different countries have formulated various policies and laws to encourage the use of these renewable sources of fuels to overcome the problem of pollution. This chapter encompasses all these aspects related to biofuels with special emphasis on biofuel production utilizing microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah B, Syed Muhammad SAF, Shokravi Z, Ismail S, Kassim KA, Mahmood AN, Aziz MMA (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50

    Article  Google Scholar 

  • Aikawa S, Inokuma K, Wakai S, Sasaki K, Ogino C, Chang JS (2018) Biotechnology for biofuels direct and highly productive conversion of cyanobacteria Arthrospira platensis to ethanol with CaCl2 addition. Biotechnol Biofuels, pp 1–9

    Google Scholar 

  • Ajanovic A, Haas R (2010) Economic challenges for the future relevance of biofuels in transport in EU countries. Energy 35(8):3340–3348

    Article  Google Scholar 

  • Alba GL, Torri C, Samorì C, Van Der Spek J, Fabbri D, Kersten SRA, Brilman DWF (2012) Hydrothermal treatment (HTT) of microalgae: Evaluation of the process as conversion method in an algae biorefinery concept. Energy and Fuels 26(1):642–657

    Article  CAS  Google Scholar 

  • Ali S, Rafique A, Ahmed M, Sakandar S (2018) Different type of industrial fermentors and their associated operations for the mass production of metabolite. Eur J Pharm Med Res 5(5):109–119

    Google Scholar 

  • Antoni D, Zverlov V, Schwarz W (2007) Biofuels from microbes. Appl Microbiol Biotechnol 77(1):23–35

    Article  CAS  PubMed  Google Scholar 

  • Aravanis A, Goodall B, Mendez M, Pyle J, Moreno J (2009) Methods and systems for biofuel production. US20100297749A1

    Google Scholar 

  • Aro E (2015) From first generation biofuels to advanced solar biofuels. Ambio 45(S1):24–31

    Article  PubMed Central  CAS  Google Scholar 

  • Babich I, van der Hulst M, Lefferts L, Moulijn J, O’Connor P, Seshan K (2011) Catalytic pyrolysis of microalgae to high-quality liquid bio-fuels. Biomass Bioenergy 35(7):3199–3207

    Article  CAS  Google Scholar 

  • Baker E, Mudge L (1984) Mechanisms of catalytic biomass gasification. J Anal Appl Pyrolysis 6(3):285–297

    Article  CAS  Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  • Banks D, Schäffler J (2006) The potential contribution of renewable energy in South Africa. Available online: http://earthlife.org.za/www/wp-content/uploads/2009/04/potential-of-re-in-sa-feb06.pdf

  • Baskar G, Naveen Kumar R, Heronimus Melvin X, Aiswarya R, Soumya S (2016) Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production. Renew Energy 98:23–28

    Article  CAS  Google Scholar 

  • Barreiro LD, Prins W, Ronsse F, Brilman W (2013) Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects. Biomass Bioenergy 53(0):113–127

    Article  CAS  Google Scholar 

  • Behera B, Varma A (2018) Diesel-like biofuels. Bioenergy for sustainability and security. Renew Sustain Energy Rev 91:159–204

    Google Scholar 

  • Bellamy W (1977) Production of ethanol from cellulose using a thermophilic mixed culture. US4094742A

    Google Scholar 

  • Bertrand E, Vandenberghe L, Soccol C, Sigoillot J, Faulds C (2016) First generation bioethanol. Green fuels technology. Springer, pp 175–212

    Google Scholar 

  • Bhattacharya A (2010) Siderophore mediated metal uptake by Pseudomonas Fluorescens and its comparison to Iron (III) chelation. Ceylon J Sci (Biol Sci) 39(2):147–155

    Article  Google Scholar 

  • Blinová L, BartoÅ¡ová A, Gerulová K (2015) Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Res Pap Fac Mater Sci Technol Slovak Univ Technol 23(36):87–95

    Google Scholar 

  • Bond-Watts B, Bellerose R, Chang M (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222–227

    Google Scholar 

  • Borowitzka M (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70(1–3):313–321

    Google Scholar 

  • Brat D, Weber C, Lorenzen W, Bode HB, Boles E (2012) Cytosolic re-localization and optimization of valine synthesis and catabolism enables increased isobutanol production with the yeast Saccharomyces cerevisiae. Biotechnol Biofuels 5(1):1–16

    Article  CAS  Google Scholar 

  • Breuer G, Evers W, de Vree J, Kleinegris D, Martens D, Wijffels R, Lamers P (2013) Analysis of fatty acid content and composition in microalgae. J Visualized Exp 80

    Google Scholar 

  • Cannel E, Moo-Young M (1980) Solid-state fermentation systems. Process Biochem 15(6):24–28

    CAS  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: Economics and policies. Energy Policy 39(7):4222–4234

    Article  Google Scholar 

  • Charles MB, Ryan R, Ryan N, Oloruntoba R (2007) Public policy and biofuels: the way forward? Energy Policy 35(11):5737–5746

    Article  Google Scholar 

  • Chavez-Rodriguez M, Nebra S (2010) Assessing GHG emissions, ecological footprint, and water linkage for different fuels. Environ Sci Technol 44(24):9252–9257

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Wang Y, Sun Y, Zhang L, Li W (2001) Highly efficient expression of rabbit neutrophil peptide-1 gene in Chlorella ellipsoidea cells. Curr Genet 39:365–370

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Lin B, Huang M, Chang J (2015) Thermochemical conversion of microalgal biomass into biofuels: A review. Bioresour Technol 184:314–327

    Article  CAS  PubMed  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  PubMed  Google Scholar 

  • Choi KY, Wernick DG, Tat CA, Liao JC (2014) Consolidated conversion of protein waste into biofuels and ammonia using Bacillus subtilis. Metab Eng 23:53–61

    Article  CAS  PubMed  Google Scholar 

  • Chow KC, Tung WL (1999) Electrotransformation of Chlorella vulgaris. Plant Cell Rep 18:778–780

    Article  CAS  Google Scholar 

  • Clarke K, Mokomele T, Callanan L, Groenewald J (2017) Zymomonas mobilis–towards bacterial biofuel. Energy, Environment and Climate Change, The Nexus, pp 205–219

    Google Scholar 

  • Concas A, Pisu M, Cao G (2010) Novel simulation model of the solar collector of BIOCOIL photobioreactors for CO2 sequestration with microalgae. Chem Eng J 157(2-3):297–303

    Article  CAS  Google Scholar 

  • Concas A, Malavasi V, Costelli C, Fadda P, Pisu M, Cao G (2016) Autotrophic growth and lipid production of Chlorella sorokiniana in lab batch and BIOCOIL photobioreactors: experiments and modeling. Bioresour Technol 211:327–338

    Article  CAS  PubMed  Google Scholar 

  • Dereli RK, Urban DR, Heffernan B, Jordan JA, Ewing J, Rosenberger GT, Dunaev TI (2012) 8th iwa symposium on waste management problems in agro-industries- agro’2011: Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage. Environ Technol (UK) 33(13):1511–1516

    Article  CAS  Google Scholar 

  • Dias M, da Cunha M, Maciel Filho R, Bonomi A, Jesus C, Rossell C (2011) Simulation of integrated first and second generation bioethanol production from sugarcane: Comparison between different biomass pretreatment methods. J Ind Microbiol Biot 38(8):955–966

    Google Scholar 

  • Dong T, Knoshaug EP, Pienkos PT, Laurens LML (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review. Appl Energy 177:879–895

    Article  CAS  Google Scholar 

  • Dubey A, Jain J, Singh J (2013) Potential of membrane bioreactors’ in ethanol and biogas production a review. Int J Chem Chem Eng 3(3):131–138

    Google Scholar 

  • Dufey A (2006) Biofuels production, trade and sustainable development: emerging issues. International Institute for Environment and Development, London

    Google Scholar 

  • Dutta K, Daverey A, Lin J (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • Eichler-Stahlberg A, Weisheit W, Ruecker O, Heitzer M (2009) Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta 229:873–883

    Google Scholar 

  • Elshahed MS (2010) Microbiological aspects of biofuel production: current status and future directions. J Adv Res 1:103–111

    Google Scholar 

  • Falkoski D, Guimarães V, de Almeida M, Alfenas A, Colodette J, de Rezende S (2013) Chrysoporthe cubensis: A new source of cellulases and hemicellulases to application in biomass saccharification processes. Bioresour Technol 130:296–305

    Article  CAS  PubMed  Google Scholar 

  • Fermoso J, Coronado JM, Serrano DP, Pizarro P (2017) Pyrolysis of microalgae for fuel production. In: Microalgae-based biofuels and bioproducts, From feedstock cultivation to end-products, pp 259–281

    Chapter  Google Scholar 

  • Foody P, Anand V (2004) Process for producing a pretreated feedstock. US20080045762A1

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92(5):405–416

    Google Scholar 

  • Gabra FA, Abd-Alla MH, Danial AW, Abdel-Basset R, Abdel-Wahab AM (2019) Production of biofuel from sugarcane molasses by diazotrophic Bacillus and recycle of spent bacterial biomass as biofertilizer inoculants for oil crops. Biocatal Agric Biotechnol 19:101112

    Article  Google Scholar 

  • Gao Z, Zhao H, Li Z, Tan X, Lu X (2012) Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy Environ Sci 5(12):9857–9865

    Article  CAS  Google Scholar 

  • Graham PB, Mech BE, Engineering MEIC (2018) Study of biodiesel production using different soxhlet extraction method. Int J Recent Tech Mech Elecr Eng 5(4):12–15

    Google Scholar 

  • Grierson S, Strezov V, Shah P (2011) Properties of oil and char derived from slow pyrolysis of Tetraselmis chui. Bioresour Technol 102(17):8232–8240

    Article  CAS  PubMed  Google Scholar 

  • Gruszecki AC, Robinson CA, Kloda S, Brissie RM (2005) High urine ethanol and negative blood and vitreous ethanol in a diabetic woman: a case report, retrospective case survey, and review of the literature. Am J Forensic Med Pathol 26:96–98

    Google Scholar 

  • Gulati M, Kohlmann K, Ladisch MR, Hespell R, Bothast RJ (1996) Assessment of ethanol production options for corn products. Bioresour Technol 58(3):253–264

    Google Scholar 

  • Haankuku C, Epplin F, Kakani V (2015) Industrial sugar beets to biofuel: Field to fuel production system and cost estimates. Biomass Bioenergy 80:267–277

    Article  Google Scholar 

  • Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, Salehi Jouzani G, Najafi G, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sust Energ Rev 27:77–93

    Article  CAS  Google Scholar 

  • Hall K, Holtzapple M, Capareda S (2008) Biofuel processing system. US20080280338A1

    Google Scholar 

  • Halme A, Zhang X (1995) Biofuel cell utilizing saccharomyces cerevisiae - modelling of the process. IFAC Proc 28(3):165–170

    Google Scholar 

  • Harman-Ware A, Morgan T, Wilson M, Crocker M, Zhang J, Liu K, Stork J, Debolt S (2013) Microalgae as a renewable fuel source: Fast pyrolysis of Scenedesmus sp. Renew Energy 60:625–632

    Article  CAS  Google Scholar 

  • Huang X, Weber JC, Hinson TK, Mathieson AC, Minocha SC (1996) Transient expression of the GUS reporter gene in the protoplasts and partially digested cells of Ulva lactuca L. (Chlorophyta). Bot Mar 39:467–474

    Google Scholar 

  • Hazelwood L, Daran J, van Maris A, Pronk J, Dickinson J (2008) The Ehrlich pathway for fusel alcohol production: A century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74(8):2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IEA (2004) Biofuels for transport: an international perspective. International Energy Agency, Paris

    Google Scholar 

  • Ingram LO, Conway T, Clark DP, Sewell GW, Preston JF (1987) Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol 53(10):2420

    Google Scholar 

  • Inokuma K, Yoshida T, Ishii J, Hasunuma T, Kondo A (2014) Efficient co-displaying and artificial ratio control of α-amylase and glucoamylase on the yeast cell surface by using combinations of different anchoring domains. Appl Microbiol Biotechnol 99(4):1655–1663

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. In: Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K, Adler A, Baum I, Brunner S, Eickemeier P, Kriemann B, Savolainen J, Schlömer S, von Stechow C, Zwickel T, Minx JC (eds) Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–9

    Google Scholar 

  • Jang Y, Lee J, Lee J, Park J, Im J, Eom M, Lee J, Lee S, Song H, Cho J, Seung D, Lee S (2012) Enhanced butanol production obtained by reinforcing the direct butanol-forming route in clostridium acetobutylicum. mBio 3(5)

    Google Scholar 

  • Kamm B, Kamm M (2007) Biorefineries – multi product processes. Adv Biochem Eng Biotechnol 105:175–204

    Google Scholar 

  • Karamanev D (2011) Biofuel cell. CA2530914A1

    Google Scholar 

  • Klasson K, Ackerson M, Clausen E, Gaddy J (1992) Bioconversion of synthesis gas into liquid or gaseous fuels. Enzyme Microbial Technol 14(8):602–608

    Article  CAS  Google Scholar 

  • Kojima M, Mitchell D, Ward W (2007) Considering trade policies for liquid biofuels. Energy Sector Management Assistance Program, Special Report 004/07. World Bank, Washington, DC

    Google Scholar 

  • Kopke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, Ehrenreich A, Liebl W, Gottschalk G, Durre P (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107(29):13087–13092

    Article  CAS  PubMed  Google Scholar 

  • Kukkonen P, Knuuttila P, Jokela P (2013) Method and apparatus for producing synthesis gas from biomass. CN101918305A

    Google Scholar 

  • Lacey D, Lawson F (1970) Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium thiobacillus ferrooxidens. Biotechnol Bioeng 12(1):29–50

    Article  CAS  Google Scholar 

  • Lan EI, Liao JC (2011) Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metab Eng 13(4):353–363

    Article  CAS  PubMed  Google Scholar 

  • Lapola D, Priess J, Bondeau A (2009) Modeling the land requirements and potential productivity of sugarcane and jatropha in Brazil and India using the LPJmL dynamic global vegetation model. Biomass Bioenergy 33(8):1087–1095

    Article  Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283(5402):686–689

    Article  CAS  PubMed  Google Scholar 

  • Leong W, Lim J, Lam M, Uemura Y, Ho Y (2018) Third generation biofuels: A nutritional perspective in enhancing microbial lipid production. Renew Sustain Energy Rev 91:950–961

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: Prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185

    Article  CAS  Google Scholar 

  • Liao BQ, Kraemer JT, Bagley DM (2006) Anaerobic membrane bioreactors: Applications and research directions. Crit Rev Environ Sci Technol 36

    Google Scholar 

  • Malça J, Freire F (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy 31(15):3362–3380

    Article  CAS  Google Scholar 

  • Maschmeyer T, Humphreys LJ (2011) Methods for biofuel production.

    Google Scholar 

  • McDonald R, Quintero R, Sotiriadis A (2009) Hybrid process for the production of biofuel. US20100021980A1

    Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi M, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122(1):127–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L et al (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34:1–5

    Article  CAS  Google Scholar 

  • Minowa T, Yokoyama S, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74(12):1735–1738

    Article  CAS  Google Scholar 

  • Mirza UK, Ahmad N, Majeed T (2008) An overview of biomass energy utilization in Pakistan. Renew Sustain Energy Rev 12:1988–1996

    Google Scholar 

  • Mohr A, Raman S (2013) Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63:114–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Mohan SV, Rohit MV, Subhash GV, Chandra R, Devi MP, Butti SK, Rajesh K (2019) Algal oils as biodiesel. In: Biofuels from Algae, vol 2

    Google Scholar 

  • Munasinghe PC, Khanal SK (2010) Bioresource technology biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour Technol 101(13):5013–5022

    Article  CAS  PubMed  Google Scholar 

  • Packiam, M, Subburamu K, Desikan R, Uthandi S, Subramanian M, Soundarapandian K (2018) Suitability of pearl millet as an alternate lignocellulosic feedstock for biofuel production in India. J Appl Environ Microbiol 6(2):51–58

    Google Scholar 

  • Pan P, Hu C, Yang W, Li Y, Dong L, Zhu L, Tong D, Qing R, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils. Bioresour Technol 101(12):4593–4599

    Article  CAS  PubMed  Google Scholar 

  • Panteleev E, Panteleeva G, Panteleev P (2012) Biofuel composition. DE112013000510T5

    Google Scholar 

  • PÅ‚aczek M, Patyna A, Witczak S (2017) Technical evaluation of photobioreactors for microalgae cultivation. E3S Web of Conferences. vol 19. p 02032

    Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Pratoomyot J, Srivilas P, Noiraksar T (2005) Fatty acids composition of 10 microalgal species. J Sci Technol 27(6):1179–1187

    Google Scholar 

  • Rabaey K, Boon N, Höfte M, Verstraete W (2005) Microbial phenazine production enhances electron transfer in biofuel cells. Environ Sci Technol 39(9):3401–3408

    Article  CAS  PubMed  Google Scholar 

  • Radakovits R, Jinkerson R, Darzins A, Posewitz M (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9(4):486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao G, Mutharasan R (1987) Alcohol production by Clostridium acetobutylicum induced by methyl viologen. Biotechnol Lett 8(12):893–896

    Article  Google Scholar 

  • Rawat R, Srivastava N, Chadha BS, Oberoi HS (2014) Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energy Fuel 28:5067–5075

    Article  CAS  Google Scholar 

  • Rey F, Heiniger E, Harwood C (2007) Redirection of metabolism for biological hydrogen production. Appl Environ Microbiol 73(5):1665–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richter H, Martin ME, Angenent LT (2013) A two-stage continuous fermentation system for conversion of syngas into ethanol. Energies 6(8):3987–4000

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102(1):100–112

    Article  CAS  PubMed  Google Scholar 

  • Rolz C, de León R (2011) Ethanol fermentation from sugarcane at different maturities. Ind Crop Prod 33(2):333–337

    Article  CAS  Google Scholar 

  • Satari B, Karimi K, Zamani A (2015) Oil, chitosan, and ethanol production by dimorphic fungusMucor indicusfrom different lignocelluloses. J Chem Tech Biotechnol 91(6):1835–1843

    Article  CAS  Google Scholar 

  • Satari B, Karimi K, Taherzadeh M, Zamani A (2016) Co-production of fungal biomass derived constituents and ethanol from citrus wastes free sugars without auxiliary nutrients in airlift bioreactor. Int J Mol Sci 17(3):302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenk P, Thomas-Hall S, Stephens E, Marx U, Mussgnug J, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1(1):20–43

    Article  Google Scholar 

  • Schmalisch M, Ju C, Verhoff F, Coil G (2010) Methods and compositions for producing chemical products from C. phytofermentans. S20110183382A1

    Google Scholar 

  • Sekoai P, Yoro K (2016) Biofuel development initiatives in Sub-Saharan Africa: opportunities and challenges. Climate 4(2):33

    Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivers RP, Sonenshein AL (2004) Activation of the bacillus subtilis global regulator codY by direct interaction with branched-chain amino acids. Mol Microbiol 53(2):599–611

    Article  CAS  PubMed  Google Scholar 

  • Sims R, Mabee W, Saddler J, Taylor M (2010) An overview of second generation biofuel technologies. Bioresour Technol 101(6):1570–1580

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Snehesh A, Mukunda H, Mahapatra S, Dasappa S (2017) Fischer-Tropsch route for the conversion of biomass to liquid fuels-Technical and economic analysis. Energy 130:182–191

    Article  CAS  Google Scholar 

  • Soucaille P, Figge R, Croux C (2006) Process for chromosomal integration and dna sequence replacement in clostridia WO2008040387

    Google Scholar 

  • Speight J (2019) Unconventional gas. Natural Gas 59–98

    Google Scholar 

  • Spiess WEL (2011) Does biofuel production threaten food security. IUFoST Food Security Task Force. http://www.iufost.org/iufostftp/Does%20Biofuel%Production%20Threaten% 20Food%20Security.pdf. Accessed 12 Nov 2016

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96

    Article  CAS  PubMed  Google Scholar 

  • Swidah R, Ogunlabi O, Grant CM, Ashe MP (2018) n-Butanol production in S. cerevisiae: co-ordinate use of endogenous and exogenous pathways. Appl Microbiol Biotechnol 102(22):9857–9866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taha M, Foda M, Shahsavari E, Aburto-Medina A, Adetutu E, Ball A (2016) Commercial feasibility of lignocellulose biodegradation: possibilities and challenges. Curr Opin Biotechnol 38:190–197

    Article  CAS  PubMed  Google Scholar 

  • Tanner RS (2008) Production of ethanol from synthesis gas. In: Wall JD, Harwood CS, Demain AL (eds) Bioenergy. ASM Press, Washington, DC

    Google Scholar 

  • Tye Y, Lee K, Wan Abdullah W, Leh C (2012) Potential of Ceiba pentandra (L.) Gaertn. (kapok fiber) as a resource for second generation bioethanol: effect of various simple pretreatment methods on sugar production. Bioresour Technol 116:536–539

    Article  CAS  PubMed  Google Scholar 

  • U.S. Energy Information Administration (EIA) (2013) The international energy outlook. Washington, DC, pp 1–312

    Google Scholar 

  • Wang EQ, Li SZ, Tao L, Geng X, Li TC (2010) Modeling of rotating drum bioreactor for anaerobic solid-state fermentation. Appl Energy 87(9):2839–2845

    Article  CAS  Google Scholar 

  • Watanabe Y, de la Noüe J, Hall DO (1995) Photosynthetic performance of a helical tubular photobioreactor incorporating the cyanobacterium spirulina platensis. Biotechnol Bioeng 47(2):261–269

    Article  CAS  PubMed  Google Scholar 

  • Wess J, Brinek M, Boles E (2019) Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation. Biotechnol Biofuels 12(1)

    Google Scholar 

  • Wiatr C, Corcoran M, Mcneel T, Clark R, Cassia R, Porto B, Oppong D (2010) Processes using antibiotic alternatives in bioethanol production. WO2011116042A2

    Google Scholar 

  • Wu X, Wang D, Bean S, Wilson JP (2006) Ethanol production from pearl millet using Saccharomyces cerevisiae. Cereal Chem 83:127–131

    Article  CAS  Google Scholar 

  • Xie Q, Addy M, Liu S, Zhang B, Cheng Y, Wan Y, Li Y, Lin X, Liu Y, Chen P, Ruan R (2015) Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum forbio-oil production. Fuel 160:577–582

    Article  CAS  Google Scholar 

  • Xiong W, Li X, Xiang J, Wu O (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbiodiesel production. Appl Microb Biotechnol 78(1):29–36

    Google Scholar 

  • Yang S et al (2016) Zymomonas mobilis as a model system for production of biofuels and biochemicals. Microb Biotechnol 9(6):699–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanik J, Stahl R, Troeger N, Sinag A (2013) Pyrolysis of algal biomass. J Anal Appl Pyrolysis 103:134–141

    Article  CAS  Google Scholar 

  • Zhang M, Xie L, Yin Z, Khanal S, Zhou Q (2016) Biorefinery approach for cassava-based industrial wastes: current status and opportunities. Bioresour Technol 215:50–62

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Yu X, Zeng J, Chen S (2012) Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol Biofuels 5(3):1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrita Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, A., Singh, P., Srivastava, A. (2020). Microbial Biofuels: An Economic and Eco-Friendly Approach. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_7

Download citation

Publish with us

Policies and ethics