Skip to main content

Seaweed Biomass and Microbial Lipids as a Source of Biofuel

  • Chapter
  • First Online:
Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

The present chapter aims to highlight the promising alternative sources of bioenergy production. In this chapter, we discussed how seaweed biomass could be utilized for the derivatization of the biofuels. Seaweeds structure composed mainly of carbohydrates, which constitute some complex polysaccharides. Since they have a small amount of lignin content, it does not require complicated preprocessing like other generation biofuels that consume energy as well as time. There are needs to adopt some cost-effective technologies for efficient biomass conversion of available biomass into fermentable sugars. The chapter also focuses on the uses of conventional ethanolic microbes and oleaginous microbes. Some of the oleaginous yeasts were found to be producing a high amount of lipids that can be converted into biodiesel and are regarded as single-cell oil factories. However, the efficiency of production can be increased with metabolic engineering. Modification in the metabolic pathways and strain improvement can increase the bioenergy production. A new tool CRISPR-Cas9 in genome engineering has been discussed in brief that has significant effects on increasing the production of biofuel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah B, Muhammad SAFAS, Shokravi Z et al (2019) Fourth generation biofuel: a review on risks and mitigation strategies. Renew Sustain Energy Rev 107:37–50

    Article  Google Scholar 

  • Abeln F, Fan J, Budarin VL et al (2019) Lipid production through the single-step microwave hydrolysis of macroalgae using the oleaginous yeast Metschnikowia pulcherrima. Algal Res 38:101411

    Article  Google Scholar 

  • Abomohra AEF, El-Naggar AH, Baeshen AA (2018) Potential of macroalgae for biodiesel production: screening and evaluation studies. J Biosci Bioeng 125(2):231–237

    Article  CAS  PubMed  Google Scholar 

  • Ageitos JM, Vallejo JA, Veiga-Crespo P et al (2011) Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol 90(4):1219–1227

    Article  CAS  PubMed  Google Scholar 

  • Alaswad A, Dassisti M, Prescott T et al (2015) Technologies and developments of third generation biofuel production. Renew Sustain Energy Rev 51:1446–1460

    Google Scholar 

  • Anastasakis K, Ross AB (2011) Hydrothermal liquefaction of the brown macro-alga Laminaria saccharina: effect of reaction conditions on product distribution and composition. Bioresour Technol 102(7):4876–4883

    Article  CAS  PubMed  Google Scholar 

  • Antizar‐Ladislao B, Turrion‐Gomez JL (2008) Second‐generation biofuels and local bioenergy systems. Biofuel Bioprod Biorefin 2(5):455–469

    Article  CAS  Google Scholar 

  • Ashokkumar V, Salim MR, Salam Z et al (2017) Production of liquid biofuels (biodiesel and bioethanol) from brown marine macroalgae Padina tetrastromatica. Energy Convers Manag 135:351–361

    Article  CAS  Google Scholar 

  • Barreiro DL, Beck M, Hornung U et al (2015) Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Res 11:234–241

    Article  Google Scholar 

  • Behera S, Singh R, Arora R et al (2015) Scope of algae as third generation biofuels. Front Bioeng Biotechnol 2:90

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt AK, Bhatia RK, Thakur S et al (2018) Fuel from waste: a review on scientific solution for waste management and environment conservation (Ch. 10). In: Singh AP, Agarwal RA, Agarwal AK et al (eds) In prospects of alternative transportation fuels: volume 1: energy, environment and sustainability. Springer, Singapore, pp 205–233

    Chapter  Google Scholar 

  • Bikker P, Van Krimpen MM, Van Wikselaar P et al (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28(6):3511–3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biller P, Ross AB (2012) Hydrothermal processing of algal biomass for the production of biofuels and chemicals. Biofuels 3(5):603–623

    Article  CAS  Google Scholar 

  • Cai P, Gao J, Zhou Y (2019) CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb Cell Factories 18:63

    Article  Google Scholar 

  • Cao L, Iris KM, Cho DW et al (2019) Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar. Bioresour Technol 273:251–258

    Article  CAS  PubMed  Google Scholar 

  • Central Intelligence Agency (2016) The world factbook 2016–17: Geography: World: Geographic overview: Coastline. Central Intelligence Agency, Washington, DC

    Google Scholar 

  • Chapman V (2012) In: Chapman VJ, Chapman DJ (eds) Seaweeds and their uses, vol 3. Springer Science and Business Media

    Google Scholar 

  • Chauhan PS, Saxena A (2016) Bacterial carrageenases: an overview of production and biotechnological applications. Biotech 6(2):146

    Google Scholar 

  • Chubukov V, Mukhopadhyay A, Petzold CJ et al (2016) Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst Biol Appl 2:16009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai Z, Nielsen J (2015) Advancing metabolic engineering through systems biology of industrial microorganisms. Curr Opin Biotechnol 36:8–15

    Article  PubMed  CAS  Google Scholar 

  • Dawes C (2016) Macroalgae systematics (Ch. 4). In: Joel F, Ira L (eds) In seaweed in health and disease prevention: volume 1: technology and engineering. Academic Press, pp 107–148

    Google Scholar 

  • Dhargalkar VK, Pereira N (2005) Seaweed: promising plant of the millennium. Sci Cult 71:3–4

    Google Scholar 

  • Dong T, Knoshaug EP, Pienkos PT (2016) Lipid recovery from wet oleaginous microbial biomass for biofuel production: a critical review. Appl Energy 177:879–895

    Article  CAS  Google Scholar 

  • Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096

    Article  PubMed  CAS  Google Scholar 

  • Dutta K, Daverey A, Lin JG (2014) Evolution retrospective for alternative fuels: first to fourth generation. Renew Energy 69:114–122

    Article  CAS  Google Scholar 

  • Ferdouse F, Holdt SL, Smith R et al (2018) The global status of seaweed production, trade and utilization. Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Gaurav N, Sivasankari S, Kiran GS et al (2017) Utilization of bioresources for sustainable biofuels: a review. Renew Sustain Energy Rev 73:205–214

    Article  CAS  Google Scholar 

  • Ge L, Wang P, Mou H (2011) Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36(1):84–89

    Article  CAS  Google Scholar 

  • Ghadiryanfar M, Rosentrater KA, Keyhani A (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sustain Energy Rev 54:473–481

    Article  CAS  Google Scholar 

  • Hessami MJ, Phang SM, Salleh A (2018) Evaluation of tropical seaweeds as feedstock for bioethanol production. Int J Sci Environ Technol 15(5):977–992

    Article  CAS  Google Scholar 

  • Hifney AF, Gomaa M, Fawzy MA (2018) Optimizing a low-cost production process of crude fucoidanase by Dendryphiella arenaria utilizing Cystoseira trinodis (Phaeophyceae) and enzymatic hydrolysis of the brown algal biomass. Waste Biomass Valorization 10(10):2773–2781

    Article  CAS  Google Scholar 

  • Hong IK, Jeon H, Lee SB (2014) Comparison of red, brown and green seaweeds on enzymatic saccharification process. J Ind Eng Chem 20(5):2687–2691

    Article  CAS  Google Scholar 

  • Hou X, Hansen JH, Bjerre AB (2015) Integrated bioethanol and protein production from brown seaweed Laminaria digitata. Bioresour Technol 197:310–317

    Article  CAS  PubMed  Google Scholar 

  • Hou X, From N, Angelidaki I et al (2017) Butanol fermentation of the brown seaweed Laminaria digitata by Clostridium beijerinckii DSM-6422. Bioresour Technol 238:16–21

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Rev Int 5(1):101–144

    Article  CAS  Google Scholar 

  • Jambo SA, Abdulla R, Azhar SHM et al (2016) A review on third generation bioethanol feedstock. Renew Sustain Energy Rev 65:756–769

    Article  CAS  Google Scholar 

  • Jard G, Jackowiak D, Carrère H et al (2012) Batch and semi-continuous anaerobic digestion of Palmaria palmata: comparison with Saccharina latissima and inhibition studies. Chem Eng J 209:513–519

    Article  CAS  Google Scholar 

  • Jung KA, Lim SR, Kim Y et al (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190

    Article  CAS  PubMed  Google Scholar 

  • Kadam SU, Álvarez C, Tiwari BK et al (2015) Processing of seaweeds (Ch. 4). In: Tiwari BK, Troy D (eds) Seaweed sustainability: Food and non-food applications, vol 1, pp 61–78

    Chapter  Google Scholar 

  • Kamala-Kannan S, Batvari BPD, Lee KJ et al (2008) Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India. Chemosphere 71(7):1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Kavscek M, Strazar M, Curk T et al (2015) Yeast as a cell factory: current state and perspectives. Microb Cell Fact 14(1):94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kendel M, Wielgosz-Collin G, Bertrand S et al (2015) Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): an analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Mar Drugs 13(9):5606–5628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khatri K, Rathore MS, Agrawal S et al (2019) Sugar contents and oligosaccharide mass profiling of selected red seaweeds to assess the possible utilization of biomasses for third-generation biofuel production. Biomass Bioenergy 130:105392

    Article  CAS  Google Scholar 

  • Kim GY, Seo YH, Kim I et al (2019) Co-production of biodiesel and alginate from Laminaria japonica. Sci Total Environ 673:750–755

    Article  CAS  PubMed  Google Scholar 

  • Kim HM, Wi SG, Jung S et al (2015) Efficient approach for bioethanol production from red seaweed Gelidium amansii. Bioresour Technol 175:128–134

    Article  CAS  PubMed  Google Scholar 

  • Kim HT, Yun EJ, Wang D et al (2013) High temperature and low acid pretreatment and agarase treatment of agarose for the production of sugar and ethanol from red seaweed biomass. Bioresour Technol 136:582–587

    Article  CAS  PubMed  Google Scholar 

  • Kim NJ, Li H, Jung K et al (2011) Ethanol production from marine algal hydrolysates using Escherichia coli KO11. Bioresour Technol 102(16):7466–7469

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Kim YW, Hong CH et al (2018) Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae. Algal Res 31:517–524

    Article  Google Scholar 

  • Koutsaviti A, Ioannou E, Roussis V (2018) Bioactive seaweed substances (Ch. 2). In: Yimin Q (ed) Bioactive seaweeds for food applications: natural ingredients for healthy diets. Academic Press, pp 25–52

    Google Scholar 

  • Lee RA, Lavoie JM (2013) From first-to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim Front 3(2):6–11

    Article  Google Scholar 

  • Lee SM, Lee JH (2012) Ethanol fermentation for main sugar components of brown-algae using various yeasts. J Ind Eng Chem 18(1):16–18

    Article  CAS  Google Scholar 

  • Li SY, Wang ZP, Wang LN et al (2019) Combined enzymatic hydrolysis and selective fermentation for green production of alginate oligosaccharides from Laminaria japonica. Bioresour Technol 281:84–89

    Article  CAS  PubMed  Google Scholar 

  • Liao JC, Mi L, Pontrelli S et al (2016) Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14(5):288

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Sun J, Chang JS et al (2018) Engineering microbes for direct fermentation of cellulose to bioethanol. Crit Rev Biotechnol 38(7):1089–1105

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Yuan X, Liang L et al (2019) Using CRISPR/Cas9 for multiplex genome engineering to optimize the ethanol metabolic pathway in Saccharomyces cerevisiae. Biochem Eng J 145:120–126

    Article  CAS  Google Scholar 

  • Louhasakul Y, Cheirsilp B, Maneerat S et al (2018) Direct transesterification of oleaginous yeast lipids into biodiesel: development of vigorously stirred tank reactor and process optimization. Biochem Eng J 137:232–238

    Article  CAS  Google Scholar 

  • Mabeau S, Fleurence J (1993) Seaweed in food products: biochemical and nutritional aspects. Trends Food Sci Technol 4(4):103–107

    Article  CAS  Google Scholar 

  • MacArtain P, Gill CI, Brooks M et al (2007) Nutritional value of edible seaweeds. Nutr Res 65(12):535–543

    Google Scholar 

  • Majidian P, Tabatabaei M, Zeinolabedini M et al (2018) Metabolic engineering of microorganisms for biofuel production. Renew Sustain Energy Rev 82:3863–3885

    Article  CAS  Google Scholar 

  • Makarova KS, Zhang F, Koonin EV (2017) SnapShot: class 1 CRISPR-Cas systems. Cell 168(5):946–946

    Article  CAS  PubMed  Google Scholar 

  • Manns D, Deutschle AL, Saake B et al (2014) Methodology for quantitative determination of the carbohydrate composition of brown seaweeds (Laminariaceae). RSC Adv 4(49):25736–25746

    Article  CAS  Google Scholar 

  • Marquez GPB, Santiañez WJE, Trono GC Jr et al (2015) Seaweeds: a sustainable fuel source (Ch. 16). In: Tiwari BK, Troy D (eds) In seaweed sustainability: volume 1. Food and non-food applications. Academic Press, pp 421–458

    Google Scholar 

  • McKennedy J, Sherlock O (2015) Anaerobic digestion of marine macroalgae: a review. Renew Sustain Energy Rev 52:1781–1790

    Article  CAS  Google Scholar 

  • Milledge JJ, Harvey PJ (2016) Ensilage and anaerobic digestion of Sargassum muticum. J Appl Phycol 28(5):3021–3030

    Article  CAS  Google Scholar 

  • Misurcova L, Ambrozova J, Samek D (2011) Seaweed lipids as nutraceuticals. (Ch. 27). In: Se-Kwon K (ed) In advances in food and nutrition research: volume 64. Marine medicinal foods: implications and applications, macro and microalgae. Academic Press, pp 339–355

    Google Scholar 

  • Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: A review. Renew Sust Energ Rev 43:961–972

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK et al (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14(2):578–597

    Article  CAS  Google Scholar 

  • Nguyen TH, Sunwoo IY, Ra CH et al (2019) Acetone, butanol, and ethanol production from the green seaweed Enteromorpha intestinalis via the separate hydrolysis and fermentation. Bioproc Biosyst Eng 42(3):415–424

    Article  CAS  Google Scholar 

  • Niehus X, Crutz-Le Coq AM, Sandoval G et al (2018) Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnol Biofuels 11(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Otoupal PB, Ito M, Arkin AP et al (2019) Multiplexed CRISPR-Cas9-based genome editing of Rhodosporidium toruloides. mSphere 4(2):e00099-19

    Google Scholar 

  • Pablo G, Dominguez E, Dominguez VD et al (2019) Third generation bioethanol from invasive macroalgae Sargassum muticum using autohydrolysis pretreatment as first step of a biorefinery. Renew Energy 141:728–735

    Article  CAS  Google Scholar 

  • Peng Y, Hu J, Yang B et al (2015) Chemical composition of seaweeds (Ch. 5). In: Tiwari BK, Troy D (eds) In seaweed sustainability: volume 1. Food and non-food applications. Academic Press, pp 79–124

    Google Scholar 

  • Pereira L (2011) A review of the nutrient composition of selected edible seaweeds. Ecology Nutrient Composition and Medicinal Uses, Seaweed, pp 15–47

    Google Scholar 

  • Proskurina S (2018) International trade in biomass for energy production: the local and global context. Lappeenranta University of Technology

    Google Scholar 

  • Reddy CRK, Rao PVS, Ganesan M et al (2006) The seaweed resources of India. In: World seaweed resources. Eti Information Services Ltd, Wokingham, p 25

    Google Scholar 

  • Rioux LE, Turgeon SL (2015) Seaweed carbohydrates (Ch. 7). In: Tiwari BK, Troy D (eds) In seaweed sustainability: volume 1. Food and non-food applications. Academic Press, pp 141–192

    Google Scholar 

  • Rodionova MV, Poudyal RS, Tiwari I et al (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42(12):8450–8461

    Article  CAS  Google Scholar 

  • Rulli MC, Bellomi D, Cazzoli A et al (2016) The water-land-food nexus of first-generation biofuels. Sci Rep 6:22521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saladini F, Patrizi N, Pulselli FM et al (2016) Guidelines for energy evaluation of first, second and third generation biofuels. Renew Sustain Energy Rev 66:221–227

    Article  Google Scholar 

  • Santos JP, Guihéneuf F, Fleming G et al (2019) Temporal stability in lipid classes and fatty acid profiles of three seaweed species from the north-eastern coast of Brazil. Algal Res 41:101572

    Article  Google Scholar 

  • Saran S, Mathur A, Dalal J et al (2017) Process optimization for cultivation and oil accumulation in an oleaginous yeast Rhodosporidium toruloides A29. Fuel 188:324–331

    Article  CAS  Google Scholar 

  • Schumacher M, Yanık J, Sınag A et al (2011) Hydrothermal conversion of seaweeds in a batch autoclave. J Supercrit Fluids 58(1):131–135

    Article  CAS  Google Scholar 

  • Shapiro RS, Chavez A, Collins JJ (2018) CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. Nat Rev Microbiol 16(6):333

    Article  CAS  PubMed  Google Scholar 

  • Siripong W, Wolf P, Kusumoputri TP et al (2018) Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate. Biotechnol Biofuels 11(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stiger-Pouvreau V, Bourgougnon N, Deslandes E (2016) Carbohydrates from seaweeds (Ch. 8). In: Joel F, Ira L (eds) In seaweed in health and disease prevention: volume 1: technology and engineering. Academic Press, pp 223–274

    Google Scholar 

  • Stovicek V, Borodina I, Forster J (2015) CRISPR–Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains. Metab Eng Commun 2:13–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudhakar K, Mamat R, Samykano M et al (2018) An overview of marine macroalgae as bioresource. Renew Sustain Energy Rev 91:165–179

    Article  Google Scholar 

  • Sudhakar MP, Merlyn R, Arunkumar K et al (2016) Characterization, pretreatment and saccharification of spent seaweed biomass for bioethanol production using baker’s yeast. Biomass Bioenerg 90:148–154

    Article  CAS  Google Scholar 

  • Sukwong P, Ra CH, Sunwoo IY et al (2018) Improved fermentation performance to produce bioethanol from Gelidium amansii using Pichia stipitis adapted to galactose. Bioproc Biosyst Eng 41(7):953–960

    Article  CAS  Google Scholar 

  • Sutherland AD, Varela JC (2014) Comparison of various microbial inocula for the efficient anaerobic digestion of Laminaria hyperborea. BMC Biotechnol 14(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tabassum MR, Xia A, Murphy JD (2016) Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. Bioresour Technol 216:219–226

    Article  CAS  PubMed  Google Scholar 

  • Tabassum MR, Xia A, Murphy JD (2018) Biomethane production from various segments of brown seaweed. Energy Convers Manag 174:855–862

    Article  CAS  Google Scholar 

  • Tiwari BK, Troy DJ (2015) Seaweed sustainability (Ch. 1). In: Tiwari BK, Troy D (eds) In seaweed sustainability: volume 1. Food and non-food applications. In seaweed sustainability. Academic Press, pp 1–6

    Google Scholar 

  • Van der Wal H, Sperber BL, Houweling-Tan B et al (2013) Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresour Technol 128:431–437

    Article  PubMed  CAS  Google Scholar 

  • Van Houte S, Buckling A, Westra ER (2016) Evolutionary ecology of prokaryotic immune mechanisms. Microbiol Mol Biol Rev 80(3):745–763

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanegas C, Bartlett J (2013a) Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition. Waste Biomass Valorization 4(3):509–515

    Article  CAS  Google Scholar 

  • Vanegas CH, Bartlett J (2013b) Green energy from marine algae: biogas production and composition from the anaerobic digestion of Irish seaweed species. Environ Technol 34(15):2277–2283

    Article  CAS  PubMed  Google Scholar 

  • Vasco-Correa J, Khanal S, Manandhar A et al (2018) Anaerobic digestion for bioenergy production: global status, environmental and techno-economic implications, and government policies. Bioresour Technol 247:1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan H, Godwin JJ, Sivamani S (2017) Data set for extraction and transesterification of bio-oil from Stoechospermum marginatum, a brown marine algae. Data Brief 14:623–628

    Article  PubMed  PubMed Central  Google Scholar 

  • White WL, Wilson P (2016) World seaweed utilization (Ch. 2). In: Tiwari B, Troy D (eds) In seaweed sustainability. Food and non-food applications. Academic Press, pp 7–25

    Google Scholar 

  • Wu FC, Wu JY, Liao YJ et al (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresour Technol 156:123–131

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Kim JY, Oh YR et al (2014) Production of biodiesel from carbon sources of macroalgae, Laminaria japonica. Bioresour Technol 169:455–461

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Kim JY, Cho HU et al (2015) Bioconversion of volatile fatty acids from macroalgae fermentation into microbial lipids by oleaginous yeast. Chem Eng J 264:735–743

    Article  CAS  Google Scholar 

  • Yahmed NB, Jmel MA, Alaya MB et al (2016) A biorefinery concept using the green macroalgae Chaetomorpha linum for the coproduction of bioethanol and biogas. Energy Convers Manag 119:257–265

    Article  CAS  Google Scholar 

  • Yellapu SK, Kaur R, Tyagi RD (2017) Detergent assisted ultrasonication aided in situ transesterification for biodiesel production from oleaginous yeast wet biomass. Bioresour Technol 224:365–372

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Choi IG, Kim KH (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol 33(5):247–249

    Article  CAS  PubMed  Google Scholar 

  • Yun EJ, Kim HT, Cho KM et al (2016) Pretreatment and saccharification of red macroalgae to produce fermentable sugars. Bioresour Technol 199:311–318

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zong W, Hong W et al (2018) Exploiting endogenous CRISPR-Cas system for multiplex genome editing in Clostridium tyrobutyricum and engineer the strain for high-level butanol production. Metab Eng 47:49–59

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Shen H, Yang X et al (2016) Microbial lipid production by oleaginous yeasts on Laminaria residue hydrolysates. RSC Adv 6(32):26752–26756

    Article  CAS  Google Scholar 

  • Zhu M, Sun L, Lu X et al (2019) Establishment of a transient CRISPR-Cas9 genome editing system in Candida glycerinogenes for co-production of ethanol and xylonic acid. J Biosci Bioeng 128(3):283–289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CSIR-CSMCRI Communication No.: PRIS- 149/2019.

The authors acknowledge the financial support from the GSBTM, Govt. of Gujarat (GAP2080) and Department of Biotechnology (DBT), Govt. of India, New Delhi for iCRAFT project (GAP2037) and Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi for establishment of infra-structure and facilities. Ms. SA and KA acknowledge the Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India for registration in the Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mangal S. Rathore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, S., Khatri, K., Rathore, M.S. (2020). Seaweed Biomass and Microbial Lipids as a Source of Biofuel. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_6

Download citation

Publish with us

Policies and ethics