Skip to main content

Bio-Hydrogen: Technology Developments in Microbial Fuel Cells and Their Future Prospects

  • Chapter
  • First Online:
Biotechnology for Biofuels: A Sustainable Green Energy Solution

Abstract

The energy is the part of the human evolution; the innovation in the transportation and industrial evolution happened in this century made mankind to depend on fossil fuels invariably. The depletion of fossil fuel resources and global carbon footprint accumulation are worrying the global countries for the future environmental safety. The clear policies were amended to come out of releasing the global carbon footprint by many countries; even developing countries are making it compulsory for controlling or reducing greenhouse gases releasing in to environment. In this context hydrogen fuel is getting promising significance since it has high energy content per unit mass, and up on combustion it will not release any carbon footprint and considered to be complete green energy. Though there are many chemical and physicochemical methods available for the production of H2, biological H2 production will be superior since this method do not use harsh chemical process and do not need extreme conditions for the production. Hence, many research studies are put forward for the production of biological hydrogen production. In this book chapter we will have comprehensive discussion on these technologies developed for the hydrogen production till date. This chapter also included the next generation technologies which are in acceleration in engineering the strains for the enhancing the productivity and various other parameters like utilization of waste biomass and waste industrial affluent etc. This chapter also included with the list of aspects to be looked for the future development of H2 as the next generation fuel energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abo-Hashesh M, Hallenbeck PC (2012) Fermentative hydrogen production. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, Boston, pp 77–92

    Chapter  Google Scholar 

  • Akhtar MK, Jones PR (2008a) Deletion of iscR stimulates recombinant clostridial Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3). Appl Microbiol Biotechnol 78:853–862

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MK, Jones PR (2008b) Engineering of a synthetic hydF-hydE-hydG-hydA operon for biohydrogen production. Anal Biochem 373:170–172

    Article  CAS  PubMed  Google Scholar 

  • Akhtar MK, Jones PR (2009) Construction of a synthetic YdbK-dependent pyruvate: H2 pathway in Escherichia coli BL21(DE3). Metab Eng 11:139–147

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L, Cossu R (2015) Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 36:147–155

    Article  CAS  PubMed  Google Scholar 

  • Andrews SC, Berks BC, McClay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    Article  CAS  PubMed  Google Scholar 

  • Antonopoulou G, Gavala HN, Skiadas IV, Angelopoulos K, Lyberatos G (2008) Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour Technol 99:110–119

    Article  CAS  PubMed  Google Scholar 

  • Axley MJ, Grahame DA, Stadtman TC (1990) Escherichia coli formate-hydrogen lyase. Purification and properties of the selenium-dependent formate dehydrogenase component. J Biol Chem 265:18213–18218

    CAS  PubMed  Google Scholar 

  • Azbar N, Dokgöz FT, Keskin T, Eltem R, Korkmaz KS, Gezgin Y, Akbal Z, Öncel S, Dalay MC, Gönen Ç, Tutuk F (2009) Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. Int J Green Energy 6:192–200

    Article  CAS  Google Scholar 

  • Bagramyan K, Trchounian A (2003) Structural and functional features of Formate hydrogen Lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochem Mosc 68:1159–1170

    Article  CAS  Google Scholar 

  • Barbosa MJ, Rocha JMS, Tramper J, Wijffels RH (2001) Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 85:25–33

    Article  CAS  PubMed  Google Scholar 

  • Bowles LK, Ellefson WL (1985) Effects of butanol on Clostridium acetobutylicum. Appl Environ Microbiol 50:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosseau JD, Zajic JE (1982) Hydrogen-gas production with Citrobacter intermedium and Clostridium pasteurianum. J Chem Technol Biotechnol 32:496–502

    Article  CAS  Google Scholar 

  • Cai G, Jin B, Monis P, Saint C (2011) Metabolic flux network and analysis of fermentative hydrogen production. Biotechnol Adv 29:375–387

    Article  CAS  PubMed  Google Scholar 

  • Chang J-S, Lee K-S, Lin P-J (2002) Biohydrogen production with fixed-bed bioreactors. Int J Hydrog Energy 27:1167–1174

    Article  CAS  Google Scholar 

  • Chaubey R, Sahu S, James OO, Maity S (2013) A review on development of industrial processes and emerging techniques for production of hydrogen from renewable and sustainable sources. Renew Sust Energ Rev 23:443–462

    Article  CAS  Google Scholar 

  • Chittibabu G, Nath K, Das D (2006) Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem 41:682–688

    Article  CAS  Google Scholar 

  • Chong M-L, Abdul Rahman NA, Rahim RA, Aziz SA, Shirai Y, Hassan MA (2009) Optimization of biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent using response surface methodology. Int J Hydrog Energy 34:7475–7482

    Article  CAS  Google Scholar 

  • Chu C-F, Xu K-Q, Li Y-Y, Inamori Y (2012) Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrog Energy 37:10611–10618

    Article  CAS  Google Scholar 

  • Collet C, Adler N, Schwitzguébel J-P, Péringer P (2004) Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int J Hydrog Energy 29:1479–1485

    Article  CAS  Google Scholar 

  • Czernik S, Evans R, French R (2007) Hydrogen from biomass-production by steam reforming of biomass pyrolysis oil. Catal Today 129:265–268

    Article  CAS  Google Scholar 

  • Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrog Energy 26:13–28

    Article  CAS  Google Scholar 

  • Demirbas A (2004) Hydrogen-rich gas from fruit shells via supercritical water extraction. Int J Hydrog Energy 29:1237–1243

    Article  CAS  Google Scholar 

  • Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  CAS  PubMed  Google Scholar 

  • Dunn S (2002) Hydrogen futures: toward a sustainable energy system. Int J Hydrog Energy 27:235–264

    Article  CAS  Google Scholar 

  • Dutta D, De D, Chaudhuri S, Bhattacharya SK (2005) Hydrogen production by cyanobacteria. Microb Cell Factories 4:36–36

    Article  CAS  Google Scholar 

  • Fan Z, Yuan L, Chatterjee R (2009) Increased hydrogen production by genetic engineering of Escherichia coli. PLoS One 4:e4432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferchichi M, Crabbe E, Gil G-H, Hintz W, Almadidy A (2005) Influence of initial pH on hydrogen production from cheese whey. J Biotechnol 120:402–409

    Article  CAS  PubMed  Google Scholar 

  • Fernandes BS, Peixoto G, Albrecht FR, Saavedra del Aguila NK, Zaiat M (2010) Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev 14:143–148

    Article  CAS  Google Scholar 

  • Freni S, Calogero G, Cavallaro S (2000) Hydrogen production from methane through catalytic partial oxidation reactions. J Power Sources 87:28–38

    Article  CAS  Google Scholar 

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–21

    Article  CAS  Google Scholar 

  • Funk JE (2001) Thermochemical hydrogen production: past and present. Int J Hydrog Energy 26:185–190

    Article  CAS  Google Scholar 

  • Ghimire A, Frunzo L, Pontoni L, d’Antonio G, Lens PNL, Esposito G, Pirozzi F (2015) Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. J Environ Manag 152:43–48

    Article  CAS  Google Scholar 

  • Ghirardi ML, Posewitz MC, Maness PC, Dubini A, Yu J, Seibert M (2007) Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. Annu Rev Plant Biol 58:71–91

    Article  CAS  PubMed  Google Scholar 

  • Gómez X, Morán A, Cuetos MJ, Sánchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727–732

    Article  CAS  Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Li X-M, Bo X, Yang Q, Zeng G-M, Liao D-x, Liu J-J (2008) Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour Technol 99:3651–3658

    Article  CAS  PubMed  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrère H, Steyer J-P (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2012) Microbial technologies in advanced biofuels production. Springer Science, Business Media, LLC, New York

    Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hansel A, Lindblad P (1998) Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Appl Microbiol Biotechnol 50:153–160

    Article  CAS  Google Scholar 

  • Harwood CS (2008) Nitrogenase-catalyzed hydrogen production by purple nonsulfur photosynthetic bacteria. In: Bioenergy. American Society of Microbiology Press

    Google Scholar 

  • Haryanto A, Fernando S, Murali N, Adhikari S (2005) Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuel 19:2098–2106

    Article  CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32:172–184

    Article  CAS  Google Scholar 

  • Hsiao C-L, Chang J-J, Wu J-H, Chin W-C, Wen F-S, Huang C-C, Chen C-C, Lin C-Y (2009) Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. Int J Hydrog Energy 34:7173–7181

    Article  CAS  Google Scholar 

  • Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391:1033–1038

    Article  CAS  PubMed  Google Scholar 

  • Jayalakshmi S, Joseph K, Sukumaran V (2009) Bio hydrogen generation from kitchen waste in an inclined plug flow reactor. Int J Hydrog Energy 34:8854–8858

    Article  CAS  Google Scholar 

  • Jung K-W, Kim D-H, Shin H-S (2010) Continuous fermentative hydrogen production from coffee drink manufacturing wastewater by applying UASB reactor. Int J Hydrog Energy 35:13370–13378

    Article  CAS  Google Scholar 

  • Jung K-W, Kim D-H, Kim S-H, Shin H-S (2011) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102:8612–8620

    Article  CAS  PubMed  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrog Energy 33:953–962

    Article  CAS  Google Scholar 

  • Kim D-H, Han S-K, Kim S-H, Shin H-S (2006a) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy 31:2158–2169

    Article  CAS  Google Scholar 

  • Kim S, Seol E, Oh Y-K, Wang GY, Park S (2009) Hydrogen production and metabolic flux analysis of metabolically engineered Escherichia coli strains. Int J Hydrog Energy 34:7417–7427

    Article  CAS  Google Scholar 

  • Kim S-H, Han S-K, Shin H-S (2006b) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 41:199–207

    Article  CAS  Google Scholar 

  • Kotsopoulos TA, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70°C). Biotechnol Bioeng 94:296–302

    Article  CAS  PubMed  Google Scholar 

  • Kovács KL, Maróti G, Rákhely G (2006) A novel approach for biohydrogen production. Int J Hydrog Energy 31:1460–1468

    Article  CAS  Google Scholar 

  • Kumar N, Das D (2000) Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochem 35:589–593

    Article  CAS  Google Scholar 

  • Kumar R, Kumar P (2017) Future microbial applications for bioenergy production: a perspective. Front Microbiol 8:450–450

    PubMed  PubMed Central  Google Scholar 

  • Lee H-S, Vermaas WFJ, Rittmann BE (2010a) Biological hydrogen production: prospects and challenges. Trends Biotechnol 28:262–271

    Article  CAS  PubMed  Google Scholar 

  • Lee K-S, Tseng T-S, Liu Y-W, Hsiao Y-D (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrog Energy 37:15556–15562

    Article  CAS  Google Scholar 

  • Lee SY, Lee HJ, Park J-M, Lee JH, Park J-S, Shin HS, Kim Y-H, Min J (2010b) Bacterial hydrogen production in recombinant Escherichia coli harboring a HupSL hydrogenase isolated from Rhodobacter sphaeroides under anaerobic dark culture. Int J Hydrog Energy 35:1112–1116

    Article  CAS  Google Scholar 

  • Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  • Levin DB, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrog Energy 31:1496–1503

    Article  CAS  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Article  CAS  Google Scholar 

  • Lin C-Y, Chang R-C (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrog Energy 29:715–720

    Article  CAS  Google Scholar 

  • Liu G, Shen J (2004) Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng 98:251–256

    Article  CAS  PubMed  Google Scholar 

  • Logan BE, Oh S-E, Kim IS, Van Ginkel S (2002) Biological hydrogen production measured in batch anaerobic respirometers. Environ Sci Technol 36:2530–2535

    Article  CAS  PubMed  Google Scholar 

  • Łukajtis R, Hołowacz I, Kucharska K, Glinka M, Rybarczyk P, Przyjazny A, Kamiński M (2018) Hydrogen production from biomass using dark fermentation. Renew Sust Energ Rev 91:665–694

    Article  CAS  Google Scholar 

  • Lynd LR, Larson E, Greene N, Laser M, Sheehan J, Dale BE, McLaughlin S, Wang M (2009) The role of biomass in America’s energy future: framing the analysis. Biofuels Bioprod Biorefin 3:113–123

    Article  CAS  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007a) Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol 77:879–890

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2007b) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2008) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39

    CAS  PubMed  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2012) Hydrogen production by recombinant Escherichia coli strains. Microb Biotechnol 5:214–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Tran KT, Yamasaki R, Wood TK (2018) Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism. Appl Microbiol Biotechnol 102:2041–2050

    Article  CAS  PubMed  Google Scholar 

  • Mangayil R, Karp M, Santala V (2012) Bioconversion of crude glycerol from biodiesel production to hydrogen. Int J Hydrog Energy 37:12198–12204

    Article  CAS  Google Scholar 

  • Manish S, Venkatesh KV, Banerjee R (2007) Metabolic flux analysis of biological hydrogen production by Escherichia coli. Int J Hydrog Energy 32:3820–3830

    Article  CAS  Google Scholar 

  • Marcelo D, Dell’Era A (2008) Economical electrolyser solution. Int J Hydrog Energy 33:3041–3044

    Article  CAS  Google Scholar 

  • Marquevich M, Coll R, Montané D (2000) Steam reforming of sunflower oil for hydrogen production. Ind Eng Chem Res 39:2140–2147

    Article  CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MAW, van Doeveren PFNM, Lips SJ, Bakker RR, de Vrije T, Claassen PAM (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:7730–7737

    Article  CAS  Google Scholar 

  • Masepohl B, Schneider K, Drepper T, Müller A, Klipp W (2002) Chapter 8 - alternative nitrogenases. In: Leigh GJ (ed) Nitrogen fixation at the millennium. Elsevier Science, Amsterdam, pp 191–222

    Chapter  Google Scholar 

  • Mathews J, Li Q, Wang G (2010) Characterization of hydrogen production by engineered Escherichia coli strains using rich defined media. Biotechnol Bioprocess Eng 15:686–695

    Article  CAS  Google Scholar 

  • Mishra J, Khurana S, Kumar N, Ghosh AK, Das D (2004) Molecular cloning, characterization, and overexpression of a novel [Fe]-hydrogenase isolated from a high rate of hydrogen producing Enterobacter cloacae IIT-BT 08. Biochem Biophys Res Commun 324:679–685

    Article  CAS  PubMed  Google Scholar 

  • Miyake J, Miyake M, Asada Y (1999) Biotechnological hydrogen production: research for efficient light energy conversion. J Biotechnol 70:89–101

    Article  CAS  Google Scholar 

  • Mohd Yasin NH, Rahman NAA, Man HC, Mohd Yusoff MZ, Hassan MA (2011) Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int J Hydrog Energy 36:9571–9580

    Article  CAS  Google Scholar 

  • Morimoto M, Atsuko M, Atif AAY, Ngan MA, Fakhru'l-Razi A, Iyuke SE, Bakir AM (2004) Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrog Energy 29:709–713

    Article  CAS  Google Scholar 

  • Mu Y, Yu H-Q, Wang G (2007) Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzym Microb Technol 40:947–953

    Article  CAS  Google Scholar 

  • Nathao C, Sirisukpoka U, Pisutpaisal N (2013) Production of hydrogen and methane by one and two stage fermentation of food waste. Int J Hydrog Energy 38:15764–15769

    Article  CAS  Google Scholar 

  • Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991

    Article  CAS  PubMed  Google Scholar 

  • Ngo TA, Kim M-S, Sim SJ (2011) High-yield biohydrogen production from biodiesel manufacturing waste by Thermotoga neapolitana. Int J Hydrog Energy 36:5836–5842

    Article  CAS  Google Scholar 

  • Nielsen AT, Amandusson H, Bjorklund R, Dannetun H, Ejlertsson J, Ekedahl L-G, Lundström I, Svensson BH (2001) Hydrogen production from organic waste. Int J Hydrog Energy 26:547–550

    Article  CAS  Google Scholar 

  • Oh S-E, Iyer P, Bruns MA, Logan BE (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87:119–127

    Article  CAS  PubMed  Google Scholar 

  • Ohta T (1979) Chapter 5 - Thermochemical hydrogen production. In: Ohta T (ed) Solar-hydrogen energy systems. Pergamon, pp 81–114

    Google Scholar 

  • O-Thong S, Prasertsan P, Intrasungkha N, Dhamwichukorn S, Birkeland N-K (2007) Improvement of biohydrogen production and treatment efficiency on palm oil mill effluent with nutrient supplementation at thermophilic condition using an anaerobic sequencing batch reactor. Enzym Microb Technol 41:583–590

    Article  CAS  Google Scholar 

  • Pan J, Zhang R, El-Mashad HM, Sun H, Ying Y (2008) Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrog Energy 33:6968–6975

    Article  CAS  Google Scholar 

  • Penfold DW, Forster CF, Macaskie LE (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzym Microb Technol 33:185–189

    Article  CAS  Google Scholar 

  • Redondas V, Gómez X, García S, Pevida C, Rubiera F, Morán A, Pis JJ (2012) Hydrogen production from food wastes and gas post-treatment by CO2 adsorption. Waste Manag 32:60–66

    Article  CAS  PubMed  Google Scholar 

  • Ren N, Wanqian G, Bingfeng L, Guangli C, Jie D (2011) Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr Opin Biotechnol 22:365–370

    Article  CAS  Google Scholar 

  • Rossmann R, Sawers G, Böck A (1991) Mechanism of regulation of the formate-hydrogenlyase pathway by oxygen, nitrate, and pH: definition of the formate regulon. Mol Microbiol 5:2807–2814

    Article  CAS  PubMed  Google Scholar 

  • Self WT, Hasona A, Shanmugam KT (2001) N-terminal truncations in the FhlA protein result in formate- and MoeA-independent expression of the hyc (formate hydrogenlyase) operon of Escherichia coli. Microbiology 147:3093–3104

    Article  CAS  PubMed  Google Scholar 

  • Shi X-Y, Jin D-W, Sun Q-Y, Li W-W (2010) Optimization of conditions for hydrogen production from brewery wastewater by anaerobic sludge using desirability function approach. Renew Energy 35:1493–1498

    Article  CAS  Google Scholar 

  • Sivaramakrishna D, Sreekanth D, Himabindu V, Anjaneyulu Y (2009) Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora. Renew Energy 34:937–940

    Article  CAS  Google Scholar 

  • Stojić DL, Marčeta MP, Sovilj SP, Miljanić ŠS (2003) Hydrogen generation from water electrolysis—possibilities of energy saving. J Power Sources 118:315–319

    Article  CAS  Google Scholar 

  • Stripp ST, Goldet G, Brandmayr C, Sanganas O, Vincent KA, Haumann M, Armstrong FA, Happe T (2009) How oxygen attacks [FeFe] hydrogenases from photosynthetic organisms. Proc Natl Acad Sci 106:17331–17336

    Article  CAS  PubMed  Google Scholar 

  • Sudheer PDVN, Rahman H, Mastan SG, Reddy MP (2010) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793

    Article  CAS  PubMed  Google Scholar 

  • Sudheer PDVN, Seo D, Kim E-J, Chauhan S, Chunawala JR, Choi K-Y (2018) Production of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid by utilizing crude glycerol as sole carbon source in engineered Escherichia coli expressing BVMO-ADH-FadL. Enzym Microb Technol 119:45–51

    Article  CAS  Google Scholar 

  • Sudheer Pamidimarri DV, Reddy MP (2014) Phylogeography and molecular diversity analysis of Jatropha curcas L. and the dispersal route revealed by RAPD, AFLP and nrDNA-ITS analysis. Mol Biol Rep 41:3225–3234

    Article  CAS  PubMed  Google Scholar 

  • Suppmann B, Sawers G (1994) Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli: identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11:965–982

    Article  CAS  PubMed  Google Scholar 

  • Tang G-L, Huang J, Sun Z-J, Tang Q-Q, Yan C-H, Liu G-Q (2008) Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J Biosci Bioeng 106:80–87

    Article  CAS  PubMed  Google Scholar 

  • Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F, Toledo-Alarcón J, Paillet F, Escudie R, Lay C-H, Chu C-Y, Leu H-J, Marone A, Lin C-Y, Kim D-H, Trably E, Ruiz-Filippi G (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14:761–785

    Article  CAS  Google Scholar 

  • Teplyakov VV, Gassanova LG, Sostina EG, Slepova EV, Modigell M, Netrusov AI (2002) Lab-scale bioreactor integrated with active membrane system for hydrogen production: experience and prospects. Int J Hydrog Energy 27:1149–1155

    Article  CAS  Google Scholar 

  • Toledo-Alarcón J, Capson-Tojo G, Marone A, Paillet F, Júnior ADNF, Chatellard L, Bernet N, Trably E (2018) Basics of bio-hydrogen production by dark fermentation. In: Liao Q, Chang J-S, Herrmann C, Xia A (eds) Bioreactors for microbial biomass and energy conversion. Springer, Singapore, pp 199–220

    Chapter  Google Scholar 

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770

    Article  CAS  PubMed  Google Scholar 

  • Tran KT, Maeda T, Sanchez-Torres V, Wood TK (2015) Beneficial knockouts in Escherichia coli for producing hydrogen from glycerol. Appl Microbiol Biotechnol 99:2573–2581

    Article  CAS  PubMed  Google Scholar 

  • Turcot J, Bisaillon A, Hallenbeck P (2008) Hydrogen production by continuous cultures of Escherchia coli under different nutrient regimes. Int J Hydrog Energy 33:1465–1470

    Article  CAS  Google Scholar 

  • Turner JA (2004) Sustainable hydrogen production. Science 305:972–974

    Article  CAS  PubMed  Google Scholar 

  • Utgikar V, Thiesen T (2006) Life cycle assessment of high temperature electrolysis for hydrogen production via nuclear energy. Int J Hydrog Energy 31:939–944

    Article  CAS  Google Scholar 

  • Valdez-Vazquez I, Ríos-Leal E, Esparza-García F, Cecchi F, Poggi-Varaldo HM (2005) Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int J Hydrog Energy 30:1383–1391

    Article  CAS  Google Scholar 

  • Van Ginkel SW, Oh S-E, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrog Energy 30:1535–1542

    Article  CAS  Google Scholar 

  • Vardar-Schara G, Maeda T, Wood TK (2008) Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 1:107–125

    Article  CAS  PubMed  Google Scholar 

  • Vasudeva K, Mitra N, Umasankar P, Dhingra SC (1996) Steam reforming of ethanol for hydrogen production: thermodynamic analysis. Int J Hydrog Energy 21:13–18

    Article  CAS  Google Scholar 

  • Vatsala TM, Raj SM, Manimaran A (2008) A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J Hydrog Energy 33:5404–5415

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Lalit Babu V, Sarma PN (2007a) Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzym Microb Technol 41:506–515

    Article  CAS  Google Scholar 

  • Venkata Mohan S, Vijaya Bhaskar Y, Murali Krishna P, Chandrasekhara Rao N, Lalit Babu V, Sarma PN (2007b) Biohydrogen production from chemical wastewater as substrate by selectively enriched anaerobic mixed consortia: influence of fermentation pH and substrate composition. Int J Hydrog Energy 32:2286–2295

    Article  CAS  Google Scholar 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811

    Article  CAS  Google Scholar 

  • Wang S, Ma Z, Zhang T, Bao M, Su H (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106

    Article  CAS  Google Scholar 

  • Wong YM, Wu TY, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sust Energ Rev 34:471–482

    Article  CAS  Google Scholar 

  • Yang H, Shao P, Lu T, Shen J, Wang D, Xu Z, Yuan X (2006) Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrog Energy 31:1306–1313

    Article  CAS  Google Scholar 

  • Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H (2006) Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl Microbiol Biotechnol 73:67–72

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Zhu Z, Hu W, Zhang H (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy 27:1359–1365

    Article  CAS  Google Scholar 

  • Zahedi S, Sales D, Romero LI, Solera R (2013) Hydrogen production from the organic fraction of municipal solid waste in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresour Technol 129:85–91

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Xing D, Zhang L, Ren N (2010) Characterization and overexpression of a [FeFe]-hydrogenase gene of a novel hydrogen-producing bacterium Ethanoligenens harbinense. Int J Hydrog Energy 35:9598–9602

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank DBT (Department of Biotechnology), India for the funding under Ramalingaswami re-entry fellowship (Project # AUR002). The authors also thank Prof. Rajendra Kumar Pandey (Vice Chancellor), Dr. Ravi Kanth Singh (Director, AIB) for their kind support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamidimarri D. V. N. Sudheer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sudheer, P.D.V.N., Chauhan, S., Velramar, B. (2020). Bio-Hydrogen: Technology Developments in Microbial Fuel Cells and Their Future Prospects. In: Kumar, N. (eds) Biotechnology for Biofuels: A Sustainable Green Energy Solution. Springer, Singapore. https://doi.org/10.1007/978-981-15-3761-5_3

Download citation

Publish with us

Policies and ethics