Skip to main content

DTM2013 Model Parameter Inversion and Correlation Analysis Between Its Accuracy

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume II (CSNC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 651))

Included in the following conference series:

Abstract

The framework and the amendment terms of DTM2013 atmospheric model are derived based on the historical DTM series model algorithms. The Legendre polynomial coefficients are derived based on the high-order associated Legendre polynomials algorithm. The long term optimal mean of F30 proxy is derived based on fitting polynomial of the F30 proxy historical measured data. The construction of the DTM2013 model algorithm was completed by integrating the inversion parameters. The correctness of the model is verified by comparing the calculation results of the parameter inversion DTM2013 model with that of the ATMOP DTM2013 model. The DTM2013 model and the MSIS00 model calculation accuracy are calculated based on GOCE atmospheric measured data, and the high correlation between the solar radiation proxy deviations and the model accuracies are derived. The solar radiation proxy factors of the model accuracy of the atmospheric models are explained, which proves that F30 proxy has better application value in atmospheric models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo, Z., Li, W., Zhang, H.: Analysis of time-varying spatial characteristics for atmospheric density of Earth edge. J. Astronaut. 33(8), 1177–1184 (2012). (Ch)

    Google Scholar 

  2. Marcos, F., Bass, J., Baker, C., Boner, W.: Neutral density models for aerospace applications. In: 32nd Aerospace Sciences Meeting and Exhibit, Reno, New York, 10–13 January (1994)

    Google Scholar 

  3. Rhoden, E., Forbes, J., Marcos, F.: The influence of geomagnetic and solar variabilities on lower thermosphere density. J. Atmos. Solar-Terr. Phys. 62, 999–1013 (2000)

    Article  Google Scholar 

  4. Jacchia, L.G.: New static models of the thermosphere and exosphere with empirical temperature models. Technical report 313, Smithsonian Astrophysical Observatory (1970)

    Google Scholar 

  5. Hedin, A.: MSIS-86 thermospheric model. J. Geophys. Res. 92(A5), 4649–4662 (1987)

    Article  Google Scholar 

  6. Kallmann-Bijl, H., Boyd, R.L.F., Lagow, H., et al.: CIRA 1961: COSPAR International Reference Atmosphere 1961. North-Holland Publishing Company, Amsterdam (1961)

    Google Scholar 

  7. Picone, J., Hedin, A., Drob, D., et al.: NRLMSISIE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA–SIA15 (2002)

    Google Scholar 

  8. Bowman, B.R., Tobiska, W.K.: A new empirical thermospheric density model JB2008 using new solar and geomagnetic indices. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Honolulu, Hawaii (2008)

    Google Scholar 

  9. Bruinsma, S.: The DTM-2013 thermosphere model. J. Space Weather Space Clim. 5(A1) (2015)

    Google Scholar 

  10. Berger, C., Biancale, R., Barlier, F., et al.: Improvement of th empirical thermosphere model DTM: DTM-94-a comparative review of various temporal variations and prospects in space geodesy applications. J. Geodesy 72(3), 161–178 (1998)

    Article  Google Scholar 

  11. Bruinsma, S., Thuillier, G., Barlier, F.: The DTM-2000 empirical thermosphere model with new data assimilation and constraints at lower boundary: accuracy and properties. J. Atmos. Solar-Terr. Phys. 65, 1053–1070 (2003)

    Article  Google Scholar 

  12. Li, J.: Satellite Precision Orbit Determination, pp. 178–183. PLA Press, Beijing (1995)

    Google Scholar 

  13. Boyd, J.P., Petschek, R.: The relationships between Chebyshev, legendre and jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Sci. Comput. 59(1), 1–27 (2014)

    Article  MathSciNet  Google Scholar 

  14. Wang, H.B., Xiong, J., Zhao, C.Y.: The mid-term forecast method of solar radiation index F10.7. J. Astronaut. 55(4), 302–312 (2014)

    Google Scholar 

  15. Bruinsma, et al.: Validation of GOCE densities and thermosphere model evaluation. Adv. Space Res. 54, 576–585 (2014)

    Article  Google Scholar 

  16. Li, X., Xu, J.Y., Tang, G.S., et al.: Processing and calibrating of in-situ atmospheric densities for APOD. Chin. J. Geophys. 61(9), 3567–3676 (2018)

    Google Scholar 

  17. Xue, B., Cang, Z.: Optimizing the NRLMSISE-00 model by a new solar EUV proxy. Chin. J. Space Sci. 37(3), 291–297 (2017)

    Google Scholar 

  18. Miao, J., Liu, S., Li, Z., et al.: Correlation of thermosphere density variation with different solar and geomagnetic indices. Manned Spaceflight 18(5), 24–29 (2012)

    Google Scholar 

  19. Huang, M., Wang, D., Feng, H., et al.: Method and application of atmosphere density retrieving based on measured data. J. Astronaut. 39(12), 1419–1424 (2018)

    Google Scholar 

Download references

Acknowledgments

I would like to thank Dr. Stuart Grey of the University of Strathclyde for providing part of the original data for this article, and Prof. Massimiliano Vasile for his help in writing this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, W., Qu, W., Li, H., Chen, N., Ye, N., Sun, Z. (2020). DTM2013 Model Parameter Inversion and Correlation Analysis Between Its Accuracy. In: Sun, J., Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume II. CSNC 2020. Lecture Notes in Electrical Engineering, vol 651. Springer, Singapore. https://doi.org/10.1007/978-981-15-3711-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3711-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3710-3

  • Online ISBN: 978-981-15-3711-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics