Skip to main content

Real-Time Attitude Estimation for High-Speed UAV in High-Frequency Environmental Dithering Based on AMCF

  • Conference paper
  • First Online:
China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume I (CSNC 2020)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 650))

Included in the following conference series:

Abstract

Attitude Measurement System (AMS) that comprised of the low-cost Micro-Electro-Mechanical System (MEMS) based Inertial Measurement Unit (IMU) is usually used as the backup equipment for high-speed Unmanned Aerial Vehicle (UAV) in high-frequency environmental dithering condition. However, both the large-amplitude acceleration during UAV high-speed taxiing and the high-frequency environmental dithering caused by the propeller are important reasons decreasing the real-time attitude measurement precision of the UAV. Furthermore, there is no any other aiding sensors could be used to correct the measurement errors except for the gyroscopes and accelerometers in MEMS IMU. In this paper, an Adaptive Mahony Complementary Filter (AMCF) is used to estimate the real-time attitude of oil-powered single-propeller industrial-grade UAV with low-cost MEMS AMS. Meanwhile, the AMCF based on interference acceleration compensation is proposed to compensate the external disturbance acceleration and the dynamic tuning PI parameters of AMCF. Moreover, the attitude angle is updated by the quaternion updating algorithm to improve the real-time performance and reliability of the AMS. Finally, the UAV high-speed taxiing and flight experiments are included to verify the practical measurement accuracy of low-cost MEMS AMS when it compared with the high-precision and expensive reference system. The flying experimental results demonstrated that the statistical RMS errors of AMS by low-cost MEMS IMU do not exceed 0.882° in pitch and 0.864° in roll when installed in the aviation UAV with high-speed and high-frequency dithering environments. These results not only provide powerful supports for UAV developers but also provide useful method for low-cost MEMS AMS developing and application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, S., Zhen, Z., Zheng, F.: Design of autonomous flight control system for small-scale UAV. In: Proceedings of 2014 IEEE Guidance, Navigation and Control Conference, 8–10 Aug 2014, pp. 1885–1888 (2014)

    Google Scholar 

  2. Saeed, S., Younes, B., Cai, C., Cai, G.: A survey of hybrid unmanned aerial vehicles. Prog. Aerosp. Sci. 98, 91–105 (2018)

    Article  Google Scholar 

  3. Gross, J., Gu, Y., Rhudy, M.: Fixed-wing UAV attitude estimation using single antenna GPS signal strength measurements. Aerospace 3(2), 14 (2016)

    Article  Google Scholar 

  4. Zhang, X., Li, H., Yuan, D.: Dual redundant flight control system design for micro-miniature UAV. In: 2nd International Conference on Electrical, Computer Engineering and Electronics (ICECEE), pp. 785–791 (2015)

    Google Scholar 

  5. Sukkarieh, S., Gibbens, P., Grocholsky, B., Willis, K., Hugh, F.D.: A low-cost, redundant inertial measurement unit for unmanned air vehicles. Int. J. Robot. Res. 19(11), 1089–1103 (2000)

    Article  Google Scholar 

  6. Zhou, Y., Zhang, H.: A fusion attitude determination method based on quaternion for MEMS gyro/accelerometer/magnetometer. In: China Conference on Control and Decision-Making, pp. 3228–3232 (2013)

    Google Scholar 

  7. Qin, W., Yuan, W.Z., Chang, H.L.: Real-time and high-performance attitude and heading reference system based on MIMU/Magnetometers. Adv. Mater. Res. 6(1), 219–223 (2009)

    Article  Google Scholar 

  8. Du, X., Lan, X., Zhai, J.: Initial attitude determination of aerial platform based on MIMU. Appl. Mech. Mater. 568–570, 964–969 (2014)

    Article  Google Scholar 

  9. Liu, X.: Design and test of MEMS attitude measurement unit for fall detection. Key Eng. Mater. 483, 465–470 (2011)

    Article  Google Scholar 

  10. Chang, J., Jérôme, C., Chang, J.: Quadrotor attitude estimation with gyroscope bias reconstruction capabilities. IFAC Papers-Online 49(5), 260–265 (2016)

    Article  Google Scholar 

  11. Kada, B., Munawar, K., Shaikh, M.S.: UAV attitude estimation using nonlinear filtering and low-cost MEMS sensors. IFAC Papers-Online 49(21), 521–528 (2016)

    Article  Google Scholar 

  12. Gu, Y., Gross, J., Rhudy, B.: A fault-tolerant multiple sensor fusion approach applied to UAV attitude estimation. Int. J. Aerosp. Eng. 2016(3), 1–12 (2016)

    Article  Google Scholar 

  13. Bauer, P., Bokor, J.: Multi-mode extended Kalman filter for aircraft attitude estimation. IFAC Papers Online 44(1), 7244–7249 (2011)

    Google Scholar 

  14. Kukillaya, P., Kamali, C., Saraf, A.: Evaluation of a novel attitude estimation algorithm for a high performance fighter aircraft. IFAC Papers-Online 47(1), 26–33 (2014)

    Google Scholar 

  15. Zhu, R., Sun, D., Zhou, Z.: A linear fusion algorithm for attitude determination using low cost MEMS-based sensors. Measurement 40(3), 322–328 (2007)

    Article  Google Scholar 

  16. Li, N., Gao, Y., Wang, Y., Liu, Z., Guan, L., Liu, X.: A low-cost underground garage navigation switching algorithm based on Kalman filtering. Sensors 19(8), 1861–1875 (2019)

    Article  Google Scholar 

  17. Wang, M., Guan, L., Xiong, D., Gao, Y., Xu, X., Chen, X.: UAV attitude measurement based on enhanced Mahony complementary filter. In: Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, Changchun, China, 5–8 August, pp. 544–550 (2018)

    Google Scholar 

  18. Sun, Q., You, P., Zhong, U.: Attitude estimation based on adaptive explicit complementary filter. Measur. Control Technol. 34(4), 24–27 (2015)

    Google Scholar 

  19. Yan, G., Weng, J.: Strapdown inertial navigation algorithm and integrated navigation principle, ISBN 978-7-5612-6547-5, pp. 222–224. Northwestern Polytechnical University Press (2019)

    Google Scholar 

  20. Chang, R.H., Mu, X.D., Shen, X.W.: Attitude estimation with complementary filter. Appl. Mech. Mater. 44–47, 3781–3784 (2011)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the NSFC (61803118), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJZD-K201804701), and the Post Doc. Foundation of Heilongjiang Province (LBH-Z17053). The AVIC Guizhou Aircraft Co., Ltd is thanks for UAV experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianwu Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Peng, Z., Guan, L., Xu, X., Zeng, J., Gao, Y., Yang, J. (2020). Real-Time Attitude Estimation for High-Speed UAV in High-Frequency Environmental Dithering Based on AMCF. In: Sun, J., Yang, C., Xie, J. (eds) China Satellite Navigation Conference (CSNC) 2020 Proceedings: Volume I. CSNC 2020. Lecture Notes in Electrical Engineering, vol 650. Springer, Singapore. https://doi.org/10.1007/978-981-15-3707-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3707-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3706-6

  • Online ISBN: 978-981-15-3707-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics