Skip to main content

On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks

  • Chapter
  • First Online:
Deep Neural Evolution

Abstract

Machine learning techniques are capable of talking, interpreting, creating, and even reasoning about virtually any subject. Also, their learning power has grown exponentially throughout the last years due to advances in hardware architecture. Nevertheless, most of these models still struggle regarding their practical usage since they require a proper selection of hyper-parameters, which are often empirically chosen. Such requirements are strengthened when concerning deep learning models, which commonly require a higher number of hyper-parameters. A collection of nature-inspired optimization techniques, known as meta-heuristics, arise as straightforward solutions to tackle such problems since they do not employ derivatives, thus alleviating their computational burden. Therefore, this work proposes a comparison among several meta-heuristic optimization techniques in the context of Deep Belief Networks hyper-parameter fine-tuning. An experimental setup was conducted over three public datasets in the task of binary image reconstruction and demonstrated consistent results, posing meta-heuristic techniques as a suitable alternative to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Usually, contrastive divergence with a single iteration is called CD-1.

  2. 2.

    http://yann.lecun.com/exdb/mnist/.

  3. 3.

    https://archive.ics.uci.edu/ml/datasets/Semeion+Handwritten+Digit.

  4. 4.

    https://people.cs.umass.edu/~marlin/data.shtml.

  5. 5.

    Note that these values were empirically chosen according to their author’s definition.

References

  1. Carreira-Perpiñán, M.A., Hinton, G.E.: On contrastive divergence learning. In: Cowell, R.G., Ghahramani, Z. (eds.) Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, pp. 33–40 (2005)

    Google Scholar 

  2. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    MATH  Google Scholar 

  4. Hinton, G.E.: A practical guide to training restricted Boltzmann machines. In: Montavon, G., Orr, G., Müller, K.R. (eds.) Neural Networks: Tricks of the Trade. Lecture Notes in Computer Science, vol. 7700, pp. 599–619. Springer, Berlin (2012)

    Google Scholar 

  5. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (2001)

    Google Scholar 

  7. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.: Time series forecasting using restricted Boltzmann machine. In: International Conference on Intelligent Computing, pp. 17–22. Springer, Berlin (2012)

    Google Scholar 

  8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  9. Levy, E., David, O.E., Netanyahu, N.S.: Genetic algorithms and deep learning for automatic painter classification. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 1143–1150. ACM, New York (2014)

    Google Scholar 

  10. Liu, K., Zhang, L.M., Sun, Y.W.: Deep Boltzmann machines aided design based on genetic algorithms. In: Applied Mechanics and Materials, vol. 568, pp. 848–851. Trans Tech, Clausthal (2014)

    Google Scholar 

  11. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188(2), 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Appl. Soft Comput. 11, 3658–3670 (2011)

    Google Scholar 

  13. Passos, L.A., Papa, J.P.: Fine-tuning infinity restricted Boltzmann machines. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 63–70. IEEE, New York (2017)

    Google Scholar 

  14. Passos, L.A., Papa, J.P.: On the training algorithms for restricted Boltzmann machine-based models. Ph.D. thesis, Universidade Federal de São Carlos (2018)

    Google Scholar 

  15. Passos, L.A., Papa, J.P.: A metaheuristic-driven approach to fine-tune deep Boltzmann machines. Appl. Soft Comput., 105717 (2019, in press). https://www.sciencedirect.com/science/article/abs/pii/S1568494619304983

  16. Passos, L.A., Rodrigues, D.R., Papa, J.P.: Fine tuning deep Boltzmann machines through meta-heuristic approaches. In: 2018 IEEE 12th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 000,419–000,424. IEEE, New York (2018)

    Google Scholar 

  17. Passos, L.A., Rodrigues, D., Papa, J.P.: Quaternion-based backtracking search optimization algorithm. In: 2019 IEEE Congress on Evolutionary Computation. IEEE, New York (2019)

    Google Scholar 

  18. Passos, L.A., de Souza Jr, L.A., Mendel, R., Ebigbo, A., Probst, A., Messmann, H., Palm, C., Papa, J.P.: Barrett’s esophagus analysis using infinity restricted Boltzmann machines. J. Vis. Commun. Image Represent. 59, 475–485 (2019)

    Google Scholar 

  19. Pereira, C.R., Passos, L.A., Rodrigues, D., Nunes, S.A., Papa, J.P.: JADE-based feature selection for non-technical losses detection. In: VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing: VipIMAGE 2019 (2019)

    Google Scholar 

  20. Rodrigues, D., Pereira, L.A.M., Almeida, T.N.S., Papa, J.P., Souza, A.N., Ramos, C.O., Yang, X.S.: BCS: a binary cuckoo search algorithm for feature selection. In: IEEE International Symposium on Circuits and Systems, pp. 465–468 (2013)

    Google Scholar 

  21. Rodrigues, D., de Rosa, G.H., Passos, L.A., Papa, J.P.: Adaptive improved flower pollination algorithm for global optimization. In: Nature-Inspired Computation in Data Mining and Machine Learning, pp. 1–21. Springer, Berlin (2020)

    Google Scholar 

  22. Rosa, G., Papa, J.P., Costa, K., Passos, L.A., Pereira, C., Yang, X.S.: Learning parameters in deep belief networks through firefly algorithm. In: IAPR Workshop on Artificial Neural Networks in Pattern Recognition, pp. 138–149. Springer, Berlin (2016)

    Google Scholar 

  23. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines. In: Artificial Intelligence and Statistics, pp. 448–455 (2009)

    Google Scholar 

  24. Smolensky, P.: Parallel distributed processing: explorations in the microstructure of cognition. In: Chap. Information Processing in Dynamical Systems: Foundations of Harmony Theory, pp. 194–281. MIT Press, Cambridge (1986)

    Google Scholar 

  25. Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)

    MathSciNet  MATH  Google Scholar 

  26. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 847–855. ACM, New York (2013)

    Google Scholar 

  27. Tieleman, T.: Training restricted Boltzmann machines using approximations to the likelihood gradient. In: Proceedings of the 25th International Conference on Machine Learning (ICML ’08), pp. 1064–1071. ACM, New York (2008)

    Google Scholar 

  28. Wang, Y., Li, H.X., Huang, T., Li, L.: Differential evolution based on covariance matrix learning and bimodal distribution parameter setting. Appl. Soft Comput. 18, 232–247 (2014)

    Google Scholar 

  29. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Google Scholar 

  30. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Google Scholar 

  31. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2(2), 78–84 (2010)

    Google Scholar 

  32. Yang, X.S., Deb, S.: Cuckoo search via lévy flights. In: Nature and Biologically Inspired Computing (NaBIC 2009). World Congress on, pp. 210–214. IEEE, New York (2009)

    Google Scholar 

  33. Yang, X.S., Deb, S.: Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 1, 330–343 (2010)

    MATH  Google Scholar 

  34. Yang, X.S., Gandomi, A.H.: Bat algorithm: a novel approach for global engineering optimization. Eng. Comput. 29(5), 464–483 (2012)

    Google Scholar 

  35. Yang, S.S., Karamanoglu, M., He, X.: Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    MathSciNet  Google Scholar 

  36. Yosinski, J., Lipson, H.: Visually debugging restricted Boltzmann machine training with a 3D example. In: Representation Learning Workshop, 29th International Conference on Machine Learning (2012)

    Google Scholar 

  37. Zhang, J., Sanderson, A.C.: Jade: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13(5), 945–958 (2009)

    Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors also appreciate FAPESP grants #2013/07375-0, #2014/12236-1, #2016/19403-6, #2017/02286-0, #2017/25908-6, #2018/21934-5 and #2019/02205-5, and CNPq grants 307066/2017-7 and 427968/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Aparecido Passos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Passos, L.A., Rosa, G.H.d., Rodrigues, D., Roder, M., Papa, J.P. (2020). On the Assessment of Nature-Inspired Meta-Heuristic Optimization Techniques to Fine-Tune Deep Belief Networks. In: Iba, H., Noman, N. (eds) Deep Neural Evolution. Natural Computing Series. Springer, Singapore. https://doi.org/10.1007/978-981-15-3685-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3685-4_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3684-7

  • Online ISBN: 978-981-15-3685-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics