Skip to main content

Comparative Study Between Weighted Overlay and Fuzzy Logic Models for Landslide Vulnerability Mapping—A Case Study of Rampur Tehsil, Himachal Pradesh

  • Conference paper
  • First Online:
Sustainable Civil Engineering Practices

Part of the book series: Lecture Notes in Civil Engineering ((LNCE,volume 72))

Abstract

The present research paper is an attempt to assess the vulnerability of Rampur Tehsil to landslides using weighted overlay and fuzzy logic methods. Causative factors such as land use, land cover, slope, geology, soil, and geomorphology have been used to assess landslide vulnerability. Survey of India Toposheets, Geological Survey of India Maps, ASTER GDEM, and LANDSAT 8 OLI/TIRS sensors are used as data sources. The causative factors were analyzed and processed in GIS environment. Fuzzy logic and weighted overlay method have been used to categorize the vulnerability zones of the study area. The weightages were assigned based on fuzzy logic rule of for macroscale landslide mapping and weighted overlay scale ranging from 1 to 5 for very low vulnerability to very high vulnerability. From the results, it can be interpreted that most of the study areas come under very high vulnerability class. The fuzzy values for each class vary from 0.6 to 0.8 for high vulnerability and from 0.81 to 0.96 for very high vulnerability class. About 57% of the area comes under very high vulnerability class, and rest 47% accounts for high vulnerability class. When it comes to weighted overlay model, nearly 80.24% and 13.68% of the area fall and under high and moderately vulnerable category. The rest minor quantities fall under very high and low categories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martha TR, Kerle N, van Westen CJ, Jetten V, Vinod Kumar K (2012) Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J Photogramm Remote Sens 67(1):105–119. https://doi.org/10.1016/j.isprsjprs.2011.11.004

    Article  Google Scholar 

  2. Gupta RP, Joshi BC (1990) Landslide hazard zoning using the GIS approach-A case study from the Ramganga catchment, Himalayas. Eng Geol 28(1–2):119–131. https://doi.org/10.1016/0013-7952(90)90037-2

    Article  Google Scholar 

  3. Panikkar SV, Subramanyan V (1996) A geomorphic evaluation of the landslides around Dehradun and Mussoorie, Uttar Pradesh, India. Geomorphology 15(2):169–181. https://doi.org/10.1016/0169-555X(95)00121-K

    Article  Google Scholar 

  4. Champati Ray PK, Dimri S, Lakhera RC, Sati Sa (2007) Fuzzy-based method for landslide hazard assessment in active seismic zone of Himalaya. Landslides 4(2):101–111. https://doi.org/10.1007/s10346-006-0068-6

    Article  Google Scholar 

  5. Prakash S (2016) Historical records of socio-economically significant Landslides in India. J South Asian Stud 4(2):177–204

    Google Scholar 

  6. Anbalagan R, Parida S (2013) Geoenvironmental problems due to harmony landslide in Garhwal Himalaya, Uttarakhand, India. Int J Emerg Technol Adv Eng 3(3):553–559

    Google Scholar 

  7. Anbalagan R, Singh B (1996) Landslide hazard and risk assessment mapping of mountainous terrains-a case study from Kumaun Himalaya, India. Eng Geol 43:237–246. https://doi.org/10.1016/S0013-7952(96)00033-6

    Article  Google Scholar 

  8. Kanungo D, Arrora M, Sarkar S, Gupta R (2009) Landslide Susceptibility Zonation (LSZ) mapping-a review. J South Asia Disaster Stud 2:81–105

    Google Scholar 

  9. Naithani A (2007) Macro landslide hazard zonation mapping using univariate statistical analysis in parts of Garhwal Himalaya. J Geol Soc India 70:353–368

    Google Scholar 

  10. Rawat MS, Uniyal DP, Dobhal R, Joshi V, Rawat BS, Bartwal A, Aswal A (2015) Study of landslide hazard zonation in Mandakini Valley, Rudraprayag district, Uttarakhand using remote sensing and GIS. Curr Sci 109(1):158–170

    Google Scholar 

  11. Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. Int J Remote Sens 23(2):357–369

    Article  Google Scholar 

  12. Anbalagan R, Kumar R, Lakshmanan K, Parida S, Neethu S (2015) Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung valley, Sikkim. Geoenvironmental Disasters 2(1):6. https://doi.org/10.1186/s40677-014-0009-y

    Article  Google Scholar 

  13. Bibi T, Gul Y, Abdul Rahman A, Riaz M (2016) Landslide susceptibility assessment through fuzzy logic inference system (FLIS). Int Arch Photogramm, Remote Sens Spat Inf sciences—ISPRS Arch 42(4W1):355–360. https://doi.org/10.5194/isprs-archives-XLII-4-W1-355-2016

  14. Leonardi G, Palamara R, Cirianni F (2016) Landslide susceptibility mapping using a fuzzy approach. Procedia Eng 161:380–387. https://doi.org/10.1016/j.proeng.2016.08.578

    Article  Google Scholar 

  15. Mijani N, Samani NN (2017) Comparison of fuzzy-based models in landslide hazard mapping XLII(October):7–10

    Google Scholar 

  16. Rahaman S, Abdul S, Aruchamy S, Jegankumar R (2014) Geospatial approach on landslide hazard zonation mapping using multicriteria decision analysis: a study on Coonoor and Ooty, Part of Kallar Watershed, the Nilgiris, Tamil Nadu. Int Arch Photogramm, Remote Sens Spat Inf Sci-ISPRS Arch 40(8):1417–1422. https://doi.org/10.5194/isprsarchives-XL-8-1417-2014

    Article  Google Scholar 

  17. Othman, AN, Mohd W. Naim WM, Noraini S (2012) GIS based multi-criteria decision making for landslide hazard zonation. Procedia—Soc Behav Sci 35(December 2011):595–602. https://doi.org/10.1016/j.sbspro.2012.02.126

  18. Raghuvanshi TK, Negassa L, Kala PM (2015) GIS based grid overlay method versus modeling approach—a comparative study for landslide hazard zonation (LHZ) in meta robi District of West Showa Zone in Ethiopia. Egypt J Remote Sens Space Sci 18(2):235–250. https://doi.org/10.1016/j.ejrs.2015.08.001

    Article  Google Scholar 

  19. Elmahdy SI, Marghany MM, Mohamed MM (2016) Application of a weighted spatial probability model in GIS to analyse landslides in Penang Island, Malaysia. Geomatics, Nat Hazards Risk 7(1):345–359. https://doi.org/10.1080/19475705.2014.904825

    Article  Google Scholar 

  20. Ahmed B (2015) Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong metropolitan area, Bangladesh. Landslides 12(6):1077–1095. https://doi.org/10.1007/s10346-014-0521-x

    Article  Google Scholar 

  21. Ding MT, Miao C (2015) GIS-based assessment of vulnerability to landslide hazards in Lushan earthquake-stricken areas. J Risk Anal Cris Response 5(2):93–106. https://doi.org/10.2991/jrarc.2015.5.2.3

    Article  Google Scholar 

  22. Michael EA, Samanta S (2016) Landslide vulnerability mapping (LVM) using weighted linear combination (WLC) model through remote sensing and GIS techniques. Model Earth Syst Environ 2(2):81–88. https://doi.org/10.1007/s40808-016-0141-7

    Article  Google Scholar 

  23. Wang, J, Peng XG (2009) GIS-based landslide hazard zonation model and its application. Procedia Earth Planet Sci 1(1):1198–1204. https://doi.org/10.1016/j.proeps.2009.09.184

  24. Shit PK, Bhunia GS, Maiti R (2016) Potential landslide susceptibility mapping using weighted overlay model (WOM). Model Earth Syst Environ 2(1):11–21. https://doi.org/10.1007/s40808-016-0078-x

    Article  Google Scholar 

  25. Lari S, Frattini P, Crosta GB (2014) A Probabilistic approach for landslide hazard analysis. Eng Geol 182(PA):3–14. https://doi.org/10.1016/j.enggeo.2014.07.015

  26. Panikkar S, Subramaniyan V (1997) Landslide hazard analysis of the area around Dehra Dun and Mussoorie, Uttar Pradesh. Curr Sci 73:1117–1123

    Google Scholar 

  27. Bureau of Indian Standards (1998) Preparation of landslide hazard zonation maps in mountainous terrain—Guidelines (Part2-Macrozonation), vol 14496, 2nd edn. BIS, New Delhi, pp 1–19

    Google Scholar 

Download references

Acknowledgements

The research work done is a part of NRDMS-DST funded research project. We would like to express our sincerest gratitude to NRDMS-DST, GOI, New Delhi, India, for funding this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Prakasam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prakasam, C., Aravinth, R., Kanwar, V.S., Nagarajan, B. (2020). Comparative Study Between Weighted Overlay and Fuzzy Logic Models for Landslide Vulnerability Mapping—A Case Study of Rampur Tehsil, Himachal Pradesh. In: Kanwar, V., Shukla, S. (eds) Sustainable Civil Engineering Practices. Lecture Notes in Civil Engineering, vol 72. Springer, Singapore. https://doi.org/10.1007/978-981-15-3677-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3677-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3676-2

  • Online ISBN: 978-981-15-3677-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics