Skip to main content

Development of a Diagnostive Tool for Prediction of Severity of Coronary Artery Disease

  • Conference paper
  • First Online:
Advances in Mechanical Engineering

Abstract

The objective of the present work is to assess the percentage rise in pressure in stenosed coronary artery using computational fluid dynamics (CFD) and develop a diagnostive tool to predict the extent of stenosis severity. Correlation for blood pressure with cross-sectional area stenosis (AS) is included in this study. A healthy artery model and a total of 15 coronary stenosis in three different stenosed models are analyzed. The hemodynamic parameters computed through CFD are used to determine blood pressure in stenosed models during systole as well as diastole. It is observed that stenosis is critical for % AS > 80%. CFD results are then mapped by standard curve fitting techniques to develop a mathematical model. A good and significant correlation between blood pressure and % area stenosis is found. The developed mathematical model is further used to develop an inexpensive and handy diagnostive tool for preliminary diagnosis of severity of coronary artery disease by clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrøm T (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol 56(3):177–184

    Article  Google Scholar 

  2. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360:213–224

    Article  Google Scholar 

  3. Jhunjhunwala P, Padole P, Thombre S (2015) CFD analysis of pulsatile flow and non-Newtonian behavior of blood in arteries. MCB Mol Cell Biomech 12(1):37–47

    Google Scholar 

  4. Pericevic I, Lally C, Toner D, Kelly DJ (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31(4):428–433. https://doi.org/10.1016/j.medengphy.2008.11.005

    Article  Google Scholar 

  5. Bernsdorf J, Wang D (2009) Non-Newtonian blood flow simulation in cerebral aneurysms. Comput Math Appl 58(5):1024–1029. https://doi.org/10.1016/j.camwa.2009.02.019

    Article  MathSciNet  MATH  Google Scholar 

  6. He Y, Duraiswamy N, Frank AO, Moore JE (2005) Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions. J Biomech Eng 127(4):637–647

    Article  Google Scholar 

  7. Duraiswamy N, Schoephoerster RT, Moore JE (2009) Comparison of near-wall hemodynamic parameters in stented artery models. J Biomech Eng 131(6):061006

    Article  Google Scholar 

  8. Karimi S, Dabagh M, Vasava P, Dadvar M, Dabir B, Jalali P (2014) Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J Nonnewton Fluid Mech 207:42–52. https://doi.org/10.1016/j.jnnfm.2014.03.007

    Article  Google Scholar 

  9. Banks J, Bressloff N (2007) Turbulence modeling in three-dimensional stenosed arterial bifurcations. J Biomech Eng 129(1):40–50

    Article  Google Scholar 

  10. Valencia A, Solis F (2006) Blood flow dynamics and arterial wall interaction in a saccular aneurysm model of the basilar artery. Comput Struct 84(21):1326–1337. https://doi.org/10.1016/j.compstruc.2006.03.008

    Article  Google Scholar 

  11. Cho YI, Kensey KR (1991) Effects of the non-Newtonian viscosity of blood on flows in a diseased arterial vessel. Part 1: steady flows. Biorheology 28(3–4):241–262

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Jhunjhunwala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jhunjhunwala, P., Padole, P.M., Thombre, S.B. (2021). Development of a Diagnostive Tool for Prediction of Severity of Coronary Artery Disease. In: Kalamkar, V., Monkova, K. (eds) Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3639-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3639-7_39

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3638-0

  • Online ISBN: 978-981-15-3639-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics