Skip to main content

Investigation of Heat Transfer Characteristics of Al2O3-Embedded Magnesium Nitrate Hexahydrate-Based Nanocomposites for Thermal Energy Storage

  • Conference paper
  • First Online:
Advances in Solar Power Generation and Energy Harvesting

Abstract

Phase change materials (PCMs) have been widely investigated as latent heat energy storage medium for effective thermal management. Presently, PCM nanocomposites have been prepared by dispersing aluminum dioxide (Al2O3) nanoparticles (NPs), which act as thermally conductive nanofillers, in molten magnesium nitrate hexahydrate (Mg(NO3)2·6H2O), an inorganic salt hydrate. Al2O3 NPs with mass fractions of 0.5, 1.0 and 1.5 wt% have been dispersed in liquid PCM to obtain PCM nanocomposites, which are used to study the heat transfer properties. The morphology of the Al2O3 NPs, PCM and PCM nanocomposites has been studied by scanning electron microscopy (SEM). Fourier-transform infrared spectroscopy (FTIR) analysis was carried out to investigate the interaction between Al2O3 and PCM in PCM nanocomposite. The melting (charging) and solidification (discharging) characteristics of the PCM nanocomposites have been recorded and analyzed. The experimental results clearly showed that the rate of melting and solidification of PCM nanocomposite increases by 15% and 38%, respectively, with an increase in the mass fraction (1.5 wt%) of nanofillers as compared to the pristine PCM. The observed reduction in heat release time confirmed the effective enhancement of thermal conductivity in Al2O3-PCM nanocomposite samples as compared to the pristine PCM. The prepared PCM nanocomposites displayed superior heat transfer capability, making it a potential candidate for thermal energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Rathgeber, H. Schmit, P. Hennemann, S. Hiebler, Investigation of pinacone hexahydrate as phase change material for thermal energy storage around 45 °C. Appl. Energy 136, 7–13 (2014)

    Article  Google Scholar 

  2. P. Felix De Castro, D.G. Shchukin, New polyurethane/docosane microcapsules as phase‐change materials for thermal energy storage. Chem. Eur. J. 21(31), 11174–11179 (2015)

    Google Scholar 

  3. D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Emerging applications of phase-change materials (PCMs): teaching an old dog new tricks. Angew. Chem. Int. Ed. 53(15), 3780–3795 (2014)

    Article  Google Scholar 

  4. P.B. Salunkhe, P.S. Shembekar, A review on effect of phase change material encapsulation on the thermal performance of a system. Renew. Sustain. Energy Rev. 16(8), 5603–5616 (2012)

    Article  Google Scholar 

  5. R. Kandasamy, X.-Q. Wang, A.S. Mujumdar, Application of phase change materials in thermal management of electronics. Appl. Therm. Eng. 27(17–18), 2822–2832 (2007)

    Article  Google Scholar 

  6. G. Setoh, F. Tan, S. Fok, Experimental studies on the use of a phase change material for cooling mobile phones. Int. Commun. Heat Mass Transf. 37(9), 1403–1410 (2010)

    Article  Google Scholar 

  7. R. Baby, C. Balaji, Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int. J. Heat Mass Transf. 55(5–6), 1642–1649 (2012)

    Article  Google Scholar 

  8. M.M. Farid, A.M. Khudhair, S.A.K. Razack, S. Al-Hallaj, A review on phase change energy storage: materials and applications. Energy Convers. Manag. 45(9–10), 1597–1615 (2004)

    Article  Google Scholar 

  9. A. Shukla, D. Buddhi, R. Sawhney, Solar water heaters with phase change material thermal energy storage medium: a review. Renew. Sustain. Energy Rev. 13(8), 2119–2125 (2009)

    Article  Google Scholar 

  10. B-a Ying, Y-l Kwok, Y. Li, Q-y Zhu, C-y Yeung, Assessing the performance of textiles incorporating phase change materials. Polym. Testing 23(5), 541–549 (2004)

    Article  Google Scholar 

  11. M.A. Fazilati, A.A. Alemrajabi, Phase change material for enhancing solar water heater, an experimental approach. Energy Convers. Manag. 71, 138–145 (2013)

    Article  Google Scholar 

  12. W.-D. Steinmann, D. Laing, R. Tamme, Latent heat storage systems for solar thermal power plants and process heat applications. J. Sol. Energy Eng. 132(2), 021003 (2010)

    Article  Google Scholar 

  13. A. Castell, I. Martorell, M. Medrano, G. Pérez, L.F. Cabeza, Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build. 42(4), 534–540 (2010)

    Article  Google Scholar 

  14. F. Kuznik, J. Virgone, J.-J. Roux, Energetic efficiency of room wall containing PCM wallboard: a full-scale experimental investigation. Energy Build. 40(2), 148–156 (2008)

    Article  Google Scholar 

  15. B. Zalba, J.M. Marın, L.F. Cabeza, H. Mehling, Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl. Therm. Eng. 23(3), 251–283 (2003)

    Article  Google Scholar 

  16. A. Abhat, Low temperature latent heat thermal energy storage: heat storage materials. Sol. Energy 30(4), 313–332 (1983)

    Article  Google Scholar 

  17. B. Xu, P. Li, C. Chan, Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: a review to recent developments. Appl. Energy 160, 286–307 (2015)

    Article  Google Scholar 

  18. L.F. Cabeza, J. Illa, J. Roca, F. Badia, H. Mehling, S. Hiebler, F. Ziegler, Immersion corrosion tests on metal-salt hydrate pairs used for latent heat storage in the 32 to 36 °C temperature range. Mater. Corr. 52(2), 140–146 (2001)

    Article  Google Scholar 

  19. B. Kamkari, H. Shokouhmand, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins. Int. J. Heat Mass Transf. 78, 839–851 (2014)

    Article  Google Scholar 

  20. X. Py, R. Olives, S. Mauran, Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. Int. J. Heat Mass Transf. 44(14), 2727–2737 (2001)

    Article  Google Scholar 

  21. J. Fukai, Y. Hamada, Y. Morozumi, O. Miyatake, Improvement of thermal characteristics of latent heat thermal energy storage units using carbon-fiber brushes: experiments and modeling. Int. J. Heat Mass Transf. 46(23), 4513–4525 (2003)

    Article  Google Scholar 

  22. R. Siegel, Solidification of low conductivity material containing dispersed high conductivity particles. Int. J. Heat Mass Transf. 20(10), 1087–1089 (1977)

    Article  Google Scholar 

  23. S. Motahar, A.A. Alemrajabi, R. Khodabandeh, Enhanced thermal conductivity of n-octadecane containing carbon-based nanomaterials. Heat Mass Transf. 52(8), 1621–1631 (2016)

    Article  Google Scholar 

  24. M. Li, A nano-graphite/paraffin phase change material with high thermal conductivity. Appl. Energy 106, 25–30 (2013)

    Article  Google Scholar 

  25. S. Motahar, N. Nikkam, A.A. Alemrajabi, R. Khodabandeh, M.S. Toprak, M. Muhammed, Experimental investigation on thermal and rheological properties of n-octadecane with dispersed TiO2 nanoparticles. Int. Commun. Heat Mass Transfer 59, 68–74 (2014)

    Article  Google Scholar 

  26. A. Yadav, B. Barman, A. Kardam, S.S. Narayanan, A. Verma, V. Jain, Thermal properties of nano-graphite-embedded magnesium chloride hexahydrate phase change composites. Energy Environ. 28(7), 651–660 (2017)

    Article  Google Scholar 

  27. C.H. Li, G. Peterson, Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J. Appl. Phys. 99(8), 084314 (2006)

    Article  Google Scholar 

  28. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids. Int. J. Therm. Sci. 48(2), 363–371 (2009)

    Article  Google Scholar 

  29. A.A. Altohamy, M.A. Rabbo, R. Sakr, A.A. Attia, Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Appl. Therm. Eng. 84, 331–338 (2015)

    Article  Google Scholar 

  30. T.-P. Teng, Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Convers. Manag. 67, 369–375 (2013)

    Article  Google Scholar 

  31. X. Li, Y. Zhou, H. Nian, X. Zhang, O. Dong, X. Ren, J. Zeng, C. Hai, Y. Shen, Advanced nanocomposite phase change material based on calcium chloride hexahydrate with aluminum oxide nanoparticles for thermal energy storage. Energy Fuels 31(6), 6560–6567 (2017)

    Article  Google Scholar 

  32. M. Nourani, N. Hamdami, J. Keramat, A. Moheb, M. Shahedi, Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity. Renew. Energy 88, 474–482 (2016)

    Article  Google Scholar 

  33. C.J. Ho, J. Gao, Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material. Int. Commun. Heat Mass Transfer 36(5), 467–470 (2009)

    Article  Google Scholar 

  34. S. Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3–H2O nanofluids. Thermochim. Acta 483(1–2), 73–77 (2009)

    Article  Google Scholar 

  35. C. Nguyen, G. Roy, N. Galanis, S. Suiro, Heat transfer enhancement by using Al203-water nanofluid in a liquid cooling system for microprocessors. WSEAS Trans. Heat Mass Transf. 1(3), 370 (2006)

    Google Scholar 

  36. S.S. Narayanan, A. Kardam, V. Kumar, N. Bhardwaj, D. Madhwal, P. Shukla, A. Kumar, A. Verma, V. Jain, Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating. Resour. Eff. Technol. 3(3), 272–279 (2017)

    Google Scholar 

  37. A. Kardam, S.S. Narayanan, N. Bhardwaj, D. Madhwal, P. Shukla, A. Verma, V. Jain, Ultrafast thermal charging of inorganic nano-phase change material composites for solar thermal energy storage. RSC Adv. 5(70), 56541–56548 (2015)

    Article  Google Scholar 

  38. S. Wu, H. Wang, S. Xiao, D. Zhu, An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J. Therm. Anal. Calorim. 110(3), 1127–1131 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ashok K. Chauhan, Founder President of Amity University, for his continuous support and also thank other members of the AIARS (M&D) Group, Amity University, Noida, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gupta, N. et al. (2020). Investigation of Heat Transfer Characteristics of Al2O3-Embedded Magnesium Nitrate Hexahydrate-Based Nanocomposites for Thermal Energy Storage. In: Jain, V., Kumar, V., Verma, A. (eds) Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-3635-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3635-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3634-2

  • Online ISBN: 978-981-15-3635-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics