Skip to main content

Role of Nanostructures in Development of Energy-Efficient Electrochemical Non-enzymatic Glucose Sensors

  • Conference paper
  • First Online:
  • 397 Accesses

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

There are various complexities involves with enzymatic glucose sensors such as poor shelf life due to the inherent instability of an enzyme, a fabrication complexity included in enzyme immobilization procedures and interference caused by soluble redox mediators. Therefore, research towards enzymeless glucose sensing has increased. Further, the integration of photovoltaic or alternate energy harvesting methods with glucose sensors results in the development of cost-effective and energy-efficient biosensor systems. Continuous technological advancements of novel materials having distinctive nanostructures assist in understanding the fundamentals of enzymeless glucose detection. In this paper, we have discussed the electrochemical method of glucose detection and the role of nanostructures in development of energy-efficient electrochemical non-enzymatic glucose sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.G.M.M. Alberti, P.Z. Zimmet, World Health Organization Consultation, Definition, diagnosis and classification of diabetes mellitus and its complications part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998)

    Google Scholar 

  2. World Health Organization, Definition and Diagnosis of Diabetes Mellitus and Intermediate Hyperglycemia: Report of a WHO/IDF Consultation (2006)

    Google Scholar 

  3. K. Ogurtsova, J.D.R.R. Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N.H. Cho, D. Cavan, J.E. Shaw, L.E. Makaroff, IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract. 128, 40–50 (2017)

    Google Scholar 

  4. World Health Organization, Global Report on Diabetes Geneva. Switzerland (2016)

    Google Scholar 

  5. Med device tracker Report, Global Diabetes Management Devices Market (Informa, London, 2017)

    Google Scholar 

  6. Abbott’s freestyle libre system becomes first CGM to be FDA Cleared for Use Without Fingersticks (2017). http://www.mobihealthnews.com/content/abbotts-freestyle-libre-system-becomes-first-cgm-be-fda-cleared-usewithout-fingersticks

  7. FDA approves first continuous glucose monitoring system for adults not requiring blood sample calibration. U.S. FOOD & DRUG Administration (2017). https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm577890.htm

  8. S. Ferri, K. Kojima, K. Sode, Review of glucose oxidases and glucose dehydrogenases: a Bird’s eye view of glucose sensing enzymes. J Diabetes. Sci. Technol. 5, 1068–1076 (2011)

    Google Scholar 

  9. S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, F.S. Sheu, Technology behind commercial devices for blood glucose monitoring in diabetes management: a review. Anal. Chim. Acta 703, 124–136 (2011)

    Google Scholar 

  10. R. Wilson, A.P.F. Turner, Glucose-oxidase—an ideal enzyme. Biosens. Bioelectron. 7, 165–185 (1992)

    Google Scholar 

  11. J.P. Frias, C.G. Lim, J.M. Ellison, C.M. Montandon, Review of adverse events associated with false glucose readings measured by GDHPQQ- based glucose test strips in the presence of interfering sugars. Diabetes Care 33, 728–729 (2010)

    Google Scholar 

  12. T.G. Schleis, Interference of maltose, icodextrin, galactose, or xylose with some blood glucose monitoring systems. Pharmacotherapy 27, 1313–1321 (2007)

    Google Scholar 

  13. K. Mori, M. Nakajima, K. Kojima, K. Murakami, S. Ferri, K. Sode, Screening of Aspergillus-derived FAD-glucose dehydrogenases from fungal genome database. Biotechnol. Lett. 33, 2255–2263 (2011)

    Google Scholar 

  14. G. Sakai, K. Kojima, K. Mori, Y. Oonishi, K. Sode, Stabilization of fungi-derived recombinant FAD-dependent glucose dehydrogenase by introducing a disulfide bond. Biotechnol. Lett. 37, 1091–1099 (2015)

    Google Scholar 

  15. H. Yoshida, G. Sakai, K. Mori, K. Kojima, S. Kamitori, K. Sode, Structural analysis of fungus-derived FAD glucose dehydrogenase. Sci. Rep. 5 (2015)

    Google Scholar 

  16. D. Pletcher, Electrocatalysis—present and future. J. Appl. Electrochem. 14, 403–415 (1984)

    Google Scholar 

  17. K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246–1301 (2010)

    Google Scholar 

  18. J. Wang, J. Pharm, Amperometric biosensors for clinical and therapeutic drug monitoring: a review. Biomed. Anal. 19, 47–53 (1999)

    Google Scholar 

  19. M.M. Rahman, A.J.S. Ahammad, J.H. Jin, S.J. Ahn, J.J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855–4886 (2010)

    Google Scholar 

  20. L.D. Burke, Premonolayer oxidation and its role in electrocatalysis. Electrochim. Acta 39, 1841–1848 (1994)

    Google Scholar 

  21. S. Ernst, J. Heitbaum, C.H. Hamann, The electrooxidation of glucose in phosphate buffer solutions: Part I. Reactivity and kinetics below 350 mV/RHE. J. Electroanal. Chem. Interfacial Electrochem. 100, 173–183 (1979)

    Google Scholar 

  22. S. Berchmans, H. Gomathi, G.P. Rao, Electrooxidation of alcohols and sugars catalyzed on a nickel-oxide modified glassy-carbon electrode. J. Electroanal. Chem. 394, 267–270 (1995)

    Google Scholar 

  23. M. Fleischmann, K. Korinek, D. Pletcher, Oxidation of organic compounds at a nickel anode in alkaline solution. J. Electroanal. Chem. 31, 39–49 (1971)

    Google Scholar 

  24. J.M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 37, 1187–1197 (1992)

    Google Scholar 

  25. K. Kano, M. Torimura, Y. Esaka, M. Goto, T. Ueda, Electrocatalytic oxidation of carbohydrates at copper(ii)-modified electrodes and its application to flow-through detection. J. Electroanal. Chem. 372, 137–143 (1994)

    Google Scholar 

  26. T.R.I. Cataldi, A. Guerrieri, I.G. Casella, E. Desimoni, Study of a cobalt-based surface-modified glassy-carbon electrode—electrocatalytic oxidation of sugars and alditols. Electroanalysis 7, 305–311 (1995)

    Google Scholar 

  27. T.R.I. Cataldi, I.G. Casella, E. Desimoni, T. Rotunno, Cobalt-based glassy-carbon chemically modified electrode for constant-potential amperometric detection of carbohydrates in flow-injection analysis and liquid chromatography. Anal. Chim. Acta 270, 161–171 (1992)

    Google Scholar 

  28. E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013)

    Google Scholar 

  29. J.Y. Chen, B. Lim, E.P. Lee, Y.N. Xia, Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4, 81–95 (2009)

    Google Scholar 

  30. L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Google Scholar 

  31. J.F. Xie, H. Zhang, S. Li, R.X. Wang, X. Sun, M. Zhou, J.F. Zhou, X.W. Lou, Y. Xie, Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 25, 5807–5813 (2013)

    Google Scholar 

  32. P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, M.O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem. Int. Ed. 55, 122–148 (2016)

    Google Scholar 

  33. M. Zhou, H.L. Wang, S.J. Guo, Towards high-efficiency nanoelectrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 45, 1273–1307 (2016)

    Google Scholar 

  34. P. Strasser, Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)-Oxygen evolution (OER) cycle using coreshell nanoelectrocatalysts. Accounts Chem. Res. 49, 2658–2668 (2016)

    Google Scholar 

  35. Z. Dasdelen, Y. Yildiz, S. Eris, F. Sen, Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybride material for methanol oxidation reaction. Appl. Catal. B Environ. 219, 511–516 (2017)

    Google Scholar 

  36. J.P. Giraldo, M.P. Landry, S.M. Faltermeier, T.P. McNicholas, N.M. Iverson, A.A. Boghossian, N.F. Reuel, A.J. Hilmer, F. Sen, J.A. Brew, M.S. Strano, Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13, 400–408 (2014)

    Google Scholar 

  37. J.T. Abrahamson, B. Sempere, M.P. Walsh, J.M. Forman, F. Sen, S. Sen, S.G. Mahajan, G.L.C. Paulus, Q.H. Wang, W. Choi, M.S. Strano, Excess thermo power and the theory of thermo power waves. ACS Nano 7, 6533–6544 (2013)

    Google Scholar 

  38. Y.M. Li, G.A. Somorjai, Nanoscale advances in catalysis and energy applications. Nano Lett. 10, 2289–2295 (2010)

    Google Scholar 

  39. A. Hagfeldt, G. Boschloo, L.C. Sun, L. Kloo, H. Pettersson, Dye sensitized solar cells. Chem. Rev. 110, 6595–6663 (2010)

    Google Scholar 

  40. N.M. Lverson, P.W. Barone, M. Shandell, L.J. Trudel, S. Sen, F. Sen, V. Ivanov, E. Atolia, E. Farias, T.P. McNicholas, N. Reuel, N.M.A. Parry, G.N. Wogan, M.S. Strano, In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat. Nanotechnol. 8, 873–880 (2013)

    Google Scholar 

  41. Y. Koskun, A. Savk, B. Sen, F. Sen, Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites. Anal. Chim. Acta 1010, 37–43 (2018)

    Google Scholar 

  42. G. Baskaya, Y. Yildiz, A. Savk, T.O. Okyay, S. Eris, H. Sert, F. Sen, Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens. Bioelectron. 91, 728–733 (2017)

    Google Scholar 

  43. C. Yang, M.E. Denno, P. Pyakurel, B.J. Venton, Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal. Chim. Acta 887, 17–37 (2015)

    Google Scholar 

  44. C.Z. Zhu, G.H. Yang, H. Li, D. Du, Y.H. Lin, Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 87, 230–249 (2015)

    Google Scholar 

  45. D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors: a review. Anal. Chim. Acta 1033, 1–34 (2018)

    Google Scholar 

  46. S. Park, T.D. Chung, H.C. Kim, Nonenzymatic glucose detection using mesoporous platinum. Anal. Chem. 75, 3046–3049 (2003)

    Google Scholar 

  47. S. Park, Y.J. Song, J.H. Han, H. Boo, T.D. Chung, Structural and electrochemical features of 3D nanoporous platinum electrodes. Electrochim. Acta 55, 2029–2035 (2010)

    Google Scholar 

  48. A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd edn. (Wiley, New York, 2001)

    Google Scholar 

  49. J.H. Bae, J.H. Han, D. Han, T.D. Chung, Effects of adsorption and confinement on nanoporous electrochemistry. Faraday Discuss. 164, 361–376 (2013)

    Google Scholar 

  50. J.H. Bae, Y.R. Kim, R.S. Kim, T.D. Chung, Enhanced electrochemical reactions of 1,4-benzoquinone at nanoporous electrodes. Phys. Chem. Chem. Phys. 15, 10645–10653 (2013)

    Google Scholar 

  51. J.H. Han, J.H. Bae, D. Han, T.D. Chung, Confined molecular dynamics for suppressing kinetic loss in sugar fuel cell. Electrochim. Acta 187, 457–464 (2016)

    Google Scholar 

  52. M. Seo, J.H. Bae, D.W. Hwang, B. Kwak, J. Yun, S.Y. Lim, T.D. Chung, Catalytic electron transfer at nanoporous indium tin oxide electrodes. Electrochim. Acta 258, 90–97 (2017)

    Google Scholar 

  53. S.H. Kim, J.B. Choi, Q.N. Nguyen, J.M. Lee, S. Park, T.D. Chung, J.Y. Byun, Nanoporous platinum thin films synthesized by electrochemical dealloying for nonenzymatic glucose detection. Phys. Chem. Chem. Phys. 15, 5782–5787 (2013)

    Google Scholar 

  54. S. Park, H.C. Kim, T.D. Chung, Electrochemical analysis based on nanoporous structures. Analyst 137, 3891–3903 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to IKG Punjab Technical University, Kapurthala, Punjab, India and Microelectronics/MEMS R&D Laboratory, Ambala College of Engineering and Applied Research, Ambala, Haryana, India, for providing the necessary resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijay Kumar Anand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Anand, V.K., Archana, B., Wason, A., Virdi, G.S., Goyal, R. (2020). Role of Nanostructures in Development of Energy-Efficient Electrochemical Non-enzymatic Glucose Sensors. In: Jain, V., Kumar, V., Verma, A. (eds) Advances in Solar Power Generation and Energy Harvesting. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-15-3635-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-3635-9_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-3634-2

  • Online ISBN: 978-981-15-3635-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics