Skip to main content

CerebLearn: Biologically Motivated Learning Rule for Artificial Feedforward Neural Networks

  • Conference paper
  • First Online:
Proceedings of International Joint Conference on Computational Intelligence

Abstract

Biologically inspired learning by neural networks has gained interest in recent times. In these research works, so far it has never been considered whether the learned weights are biologically plausible although modifications of synaptic weights underlie learning and memory in the brain. In this paper, we propose a learning rule for an artificial feedforward neural network that learns under biological constraints imposed by Dale’s law and with the requirement that weights have a monotonically decaying Gaussian distribution with some zero or near-zero weights and few large weights. We introduce this rule being inspired by feedforward learning with similar distribution of weights that occurs in cerebellum region of the brain. We test our proposed learning rule on handwritten digit recognition dataset MNIST and obtain test accuracy of 98.11% in the best case, which is comparable to the state-of-the-art accuracy (98.4%) for a two-layer feedforward neural network without any transformation of input data or any optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albus JS (1971) A theory of cerebellar function. Math Biosci 10(1):25–61

    Article  Google Scholar 

  2. Barbour B, Brunel N, Hakim V, Nadal JP (2007) What can we learn from synaptic weight distributions ? TRENDS Neurosci 30(12):622–629

    Article  Google Scholar 

  3. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y (2012) Theano: new features and speed improvements. arXiv:1211.5590

  4. Bengio Y, Lee DH, Bornschein J, Lin Z (2015) Towards biologically plausible deep learning. arXiv:1502.04156

  5. Bengio Y, Mesnard T, Fischer A, Zhang S, Wu Y (2015) An objective function for STDP. arXiv:1509.05936

  6. Bergstra J, Desjardins G, Lamblin P, Bengio Y (2009) Quadratic polynomials learn better image features. Technical Report 1337, Département d’Informatique et de Recherche Opérationnelle, Université de Montréal

    Google Scholar 

  7. Bi GQ, Poo MM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24(1):139–166

    Article  Google Scholar 

  8. Brunel N (2016) Is cortical connectivity optimized for storing information? Nat Neurosci

    Google Scholar 

  9. Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43(5):745–757

    Google Scholar 

  10. Chapeton J, Fares T, LaSota D, Stepanyants A (2012) Efficient associative memory storage in cortical circuits of inhibitory and excitatory neurons. Proc Natl Acad Sci 109(51):E3614–E3622

    Article  Google Scholar 

  11. Csäji BC (2001) Approximation with artificial neural networks. Fac Sci Etvs Lornd Univ Hungary 24:48

    Google Scholar 

  12. Eccles J (1976) From electrical to chemical transmission in the central nervous system. Notes Rec R Soc Lond 30(2):219–230

    Article  Google Scholar 

  13. Feldmeyer D, Lübke J, Sakmann B (2006) Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats. J Physiol 575(2):583–602

    Article  Google Scholar 

  14. Frick A, Feldmeyer D, Helmstaedter M, Sakmann B (2008) Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. Cereb Cortex 18(2):397–406

    Article  Google Scholar 

  15. Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Aistats, vol 15, No 106, p 275

    Google Scholar 

  16. Glorot X, Bengio Y (2010) Understanding the difficulty of training deep feedforward neural networks. In: Aistats, vol 9, pp 249–256

    Google Scholar 

  17. Goodfellow IJ, Bengio Y, Courville A (2015) Deep learning. An MIT Press book in preparation. Draft chapters available at http://www.deeplearningbook.org

    Google Scholar 

  18. Haruno M, Wolpert DM, Kawato M (1999) Multiple paired forward-inverse models for human motor learning and control. Advances in neural information processing systems, pp 31–37

    Google Scholar 

  19. Hebb DO (1949) The organization of behavior

    Google Scholar 

  20. Holmgren C, Harkany T, Svennenfors B, Zilberter Y (2003) Pyramidal cell communication within local networks in layer 2/3 of rat neocortex. J Physiol 551(1):139–153

    Article  Google Scholar 

  21. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366

    Article  MATH  Google Scholar 

  22. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv:1502.03167

  23. Isope P, Barbour B (2002) Properties of unitary granule cell \(\rightarrow \) Purkinje cell synapses in adult rat cerebellar slices. J Neurosci 22(22):9668–9678

    Google Scholar 

  24. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  25. Marr D, Thach WT (1991) A theory of cerebellar cortex. In From the Retina to the Neocortex. Birkhäuser Boston, pp 11–50

    Google Scholar 

  26. Mason A, Nicoll A, Stratford K (1991) Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. J Neurosci 11(1):72–84

    Article  Google Scholar 

  27. Salavati AH, Karbasi A (2012) Multi-level error-resilient neural networks. In: 2012 IEEE international symposium on information theory proceedings (ISIT). IEEE, pp 1064–1068

    Google Scholar 

  28. Sayer RJ, Friedlander MJ, Redman SJ (1990) The time course and amplitude of EPSPs evoked at synapses between pairs of CA3/CA1 neurons in the hippocampal slice. J Neurosci 10(3):826–836

    Article  Google Scholar 

  29. Setiono R (2000) Extracting M-of-N rules from trained neural networks. IEEE Trans Neural Netw 11(2):512–519

    Article  Google Scholar 

  30. Simard PY, Steinkraus D, Platt JC (2003) Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol 3, pp 958–962

    Google Scholar 

  31. Sjöström PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88(2):769–840

    Article  Google Scholar 

  32. Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32(6):1149–1164

    Article  Google Scholar 

  33. Song S, Sjöström PJ, Reigl M, Nelson S, Chklovskii DB (2005) Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol 3(3):e68

    Article  Google Scholar 

  34. Varshney LR, Sjöström PJ, Chklovskii DB (2006) Optimal information storage in noisy synapses under resource constraints. Neuron 52(3):409–423

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by ICT Division Innovation Fund, Grant No. 56.00.0000.028.33.080.17-214, Government of Peoples’ Republic of Bangladesh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Adnan Arefeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nimi, S.T., Adnan Arefeen, M., Adnan, M.A. (2020). CerebLearn: Biologically Motivated Learning Rule for Artificial Feedforward Neural Networks. In: Uddin, M.S., Bansal, J.C. (eds) Proceedings of International Joint Conference on Computational Intelligence. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-3607-6_1

Download citation

Publish with us

Policies and ethics