Skip to main content

Green Nanomaterials for Wastewater Treatment

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

Nanomaterials are very small-sized particles that have nanoscale dimension approximately from 1 to 100 nm. The green nanomaterials or nanoparticles are synthesized by biological methods. During the synthesis of green nanoparticles, natural materials such as plants, microorganisms and organic polymers like carbohydrates, proteins and fats are actively involved. Due to the very small size, nanomaterials are playing a significant role in wastewater treatment system and give up possibilities for targeting very specific points. Different types of biosynthesized nanomaterials are used in the controlling of water pollution, such as zinc oxide nanoparticles, phytogenic magnetic nanoparticles, biopolymer-coated metal nanoparticles, silver-impregnated cyclodextrin nanocomposites, silver nanoparticles in Aloe vera plant extract and Photocatalytic titania nanoparticles. Green nanoparticles are providing an alternative way for elimination of pollutants from the water bodies. The application of green nanoparticles provides an economical, convenient and eco-friendly way of wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal H, Kumar SV, Rajeshkumar S (2017) A review on green synthesis of zinc oxide. Res Efficient Technol 3(4):406–413

    Article  Google Scholar 

  • Ahmed S, Ahmad SM, Swami BL, Ikram S (2016) Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 9(1):1–7

    Article  CAS  Google Scholar 

  • Alrumman SA, El-kott EF, Keshk SMAS (2016) Water pollution: source & treatment. Am J Environ Eng 6(3):88–98

    Google Scholar 

  • Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24

    Article  CAS  Google Scholar 

  • Baruah S, Pal SK, Dutta J (2012) Nanostructured Zinc oxide for water treatment. Nanosci Nanotechnol Asia 2(2):90–102

    Article  CAS  Google Scholar 

  • Berekaa MM (2016) Nanotechnology in wastewater treatment; influence of nanomaterials on microbial systems. Int J Curr Microbiol App Sci 5(1):713–726

    Article  CAS  Google Scholar 

  • Chatterjee A, Nishanthini D, Sandhiya N, Abraham J (2016) Biosynthesis of titanium dioxide nanoparticles using Vigna radiate. Asian J Pharm Clin Res 9(4):85–88

    CAS  Google Scholar 

  • Chaturvedi S, Dave PN, Shah NK (2012) Applications of nanocatalyst in new era. J Saudi Chem Soc 16:307–325

    Article  CAS  Google Scholar 

  • Das VL, Thomus R, Varghese RT, Soniya EV, Mathew J, Radhakrishnan EK (2014) Extracellular synthesis of silver nanoparticles by the Bacillus strain CS 11 isolated from industrialized area. 3 Biotech 4(2):121–126

    Article  Google Scholar 

  • DeFriend KA, Wiesner MR, Barron AR (2003) Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles. J Membr Sci 224(1–2):11–28

    Article  CAS  Google Scholar 

  • Dotzauer DM, Dai J, Sun L, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6:2268–2272

    Article  CAS  Google Scholar 

  • Dutta AK, Maji SK, Adhikary B (2014) C-Fe2O3 nanoparticles: an easily recoverable effective photo-catalyst for the degradation of rose bengal and methylene blue dyes in the waste-water treatment plant. Mater Res Bull 49:28–34

    Article  CAS  Google Scholar 

  • Elmi F, Alinezhad H, Moulana Z, Salehian F, Tavakkoli SM, Asgharpour F, Fallah H, Elmi MM (2014) The use of antibacterial activity of ZnO nanoparticles in the treatment of municipal wastewater. Water Sci Technol 70(5):763–770

    Article  CAS  Google Scholar 

  • Escobar IC, Randall AA, Taylor JS (2001) Bacterial growth in distribution systems: effect of assimilable organic carbon and biodegradable dissolved organic carbon. Environ Sci Technol 35(17):3442–3447

    Article  CAS  Google Scholar 

  • Fatimah I (2016) Green synthesis of silver nanoparticles using extract of ParkiaspeciosaHassk pods assisted by microwave irradiation. J Adv Res 7(6):961–969

    Article  CAS  Google Scholar 

  • Gubin SP, Koksharov YA, Khomutov GB, Yurkov GYE (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  CAS  Google Scholar 

  • Gupta VK, Tyagi I, Sadegh H, Shahryari-Ghoshekand R, Makhlouf ASH, Maazinejad B (2015) Nanoparticles as adsorbent; a positive approach for removal of noxious metal ions: a review. Sci Technol Dev 34:195

    Article  Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics. Nanomedicine (London) 2:789–803

    Article  CAS  Google Scholar 

  • He S, Guo Z, Zhang Y, Wang J, Jhang S, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 62(18):3984–3987

    Article  CAS  Google Scholar 

  • Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63

    Article  CAS  Google Scholar 

  • Jayaseelan C, Rajkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crops Prod 45:423–429

    Article  CAS  Google Scholar 

  • Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43(24):7683–7696

    Article  CAS  Google Scholar 

  • Kaushik N, Thakur MS, Snehit S, Mhatre MS, Rajesh Y, Parikh MS (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6(2):257–262

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  • Khadar A, Behara DK, Kumar MK (2016) Synthesis and characterization of controlled size TiO2 nanoparticles via green route using Aloe vera extract. Int J Sci Res 11(5):1913–1916

    Google Scholar 

  • Lee HS, Im SJ, Kim JH, Kim HJ, Kim JP, Min BR (2008) Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination 219(1–3):48–56

    Article  CAS  Google Scholar 

  • Lee KX, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Yew YP (2016) Green synthesis of gold nanoparticles using aqueous extract of Garciniamangostana fruit peels. J Nanomaterials 2016:1–7

    Google Scholar 

  • Lee SY, Kim HJ, Patel R, Im SJ, Kim JH, Min BR (2007) Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties. Polym Adv Technol 18(7):562–568

    Article  CAS  Google Scholar 

  • Li D, Lyon DY, Li Q, Alvarez PJJ (2008) Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension. Environ Toxicol Chem 27(9):1888–1894

    Article  CAS  Google Scholar 

  • Lu C, Su F (2007) Adsorption of natural organic matter by carbon nanotubes. Sep Purif Technol 58(1):113–121

    Article  CAS  Google Scholar 

  • Ma H, Wang H, Na C (2015) Microwave-assisted optimization of platinum-nickel nanoalloys for catalytic water treatment. Appl Catal B Environ 163:198–204

    Article  CAS  Google Scholar 

  • Menon S, Rajkumar S, Venkat KS (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Res Efficient Technol 3(4):516–527

    Article  Google Scholar 

  • Nawrocki J, Kasprzyk-Hordern B (2010) The efficiency and mechanisms of catalytic ozonation. Appl Catal B Environ 99(1–2):27–42

    Article  CAS  Google Scholar 

  • Orge CA, Orfao JMM, Pereira MMFR, Duarte de Farias AM, Neto RCR, Fraga MA (2011) Ozonation of model organic compounds catalysed by nanostructured cerium oxides. Appl Catal B Environ 103(1–2):190–199

    Article  CAS  Google Scholar 

  • Owa FW (2014) Water pollution: sources, effects, control and management. Int Lett Nat Sci 3:1–6

    Google Scholar 

  • Parida UK, Bindhani BK, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using Onion (Allium cepa) extract. World J Nano Sci Eng 1:93–98

    Article  CAS  Google Scholar 

  • Patidar V, Jain P (2017) Green synthesis of TiO2 nanoparticle using Moringaoleifera leaf extract. Int Res J Eng Technol (IRJET) 04(3):470–473

    Google Scholar 

  • Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM (2006) Research strategies for safety evaluation of nanomaterials. Part VI characterization of nanoscale particles for toxicological evaluation. Toxicol Sci 90:296–303

    Article  CAS  Google Scholar 

  • Qiao S, Sun DD, Tay JH, Easton C (2003) Photocatalytic oxidation technology for humic acid removal using a nano structured TiO2/Fe2O3 catalyst. Water Sci Technol 47(1):211–217

    Article  CAS  Google Scholar 

  • Rao KG, Ashok CH, Rao KV, Chakra CHS, Tambur P (2015) Green synthesis of TiO2 nanoparticles using Aloe Vera extract. Int J Adv Res Phys Sci (IJARPS) 2(1A):28–34

    Google Scholar 

  • Rickerby DG, Morrison M (2007) Nanotechnology and the environment: a European perspective. Sci Technol Adv Mater 8(1–2):19–24

    Article  CAS  Google Scholar 

  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T (2008) Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26(2):219–424

    Google Scholar 

  • Sapsford KE, Tyner KM, Dair BJ, Deschamps JR, Medintz IL (2011) Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal Chem 83:4453–4488

    Article  CAS  Google Scholar 

  • Sarvanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitaki D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40

    Article  Google Scholar 

  • Slavin YN, Asnis J, Hafeli UO, Horacio Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology 15:65

    Article  CAS  Google Scholar 

  • Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Res Efficient Technol 3(4):459–465

    Article  Google Scholar 

  • Srinivasan S, Harrington GW, Xagoraraki I, Goel R (2008) Factors affecting bulk to total bacteria ratio in drinking water distribution systems. Water Res 42(13):3393–3404

    Article  CAS  Google Scholar 

  • Srivastava A, Srivastava ON, Talapatra S, Vajtai R, Ajayan PM (2004) Carbon nanotube filters. Nature Mater 3:610–614

    Article  CAS  Google Scholar 

  • Sundrarajan M, Gowri S (2011) Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristisleaves extract. Chalcogenide Lett 8(8):447–451

    CAS  Google Scholar 

  • Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16(10):1977–1983

    Article  CAS  Google Scholar 

  • Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34:43–69

    Article  CAS  Google Scholar 

  • Tiwari DK, Behari J, Sen P (2008) Application of nanoparticles in waste water treatment. World Appl Sci J 3(3):417–433

    Google Scholar 

  • Vetrivel V, Rajendran K, Kalaiselvi V (2015) Synthesis and characterization of pure titanium dioxide nanoparticles by Sol-gel method. Int J Chem Tech Res 7(3):1090–1097

    Google Scholar 

  • Wu Z, Zhang Y, Tao T, Zhang T, Fong H (2010) Silver nanoparticles on amidoxime fibers for photo-catalytic degradation of organic dyes in waste water. Appl Surf Sci 257(3):1092–1097

    Article  CAS  Google Scholar 

  • Xiangqian L, Huizhong X, Zhe-Sheng C, Guofang C (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomaterials 2011:1–16

    Google Scholar 

  • Yan JL, Estevez MC, Smith JE, Wang KM, He XX, Wang L, Tan WH (2007) Dye-doped nanoparticles for bioanalysis. Nano Today 2(3):44–50

    Article  Google Scholar 

  • Zhang C, Sui J, Li J, Tang Y, Cai W (2012a) Efficient removal of heavy metal ions by thiol-functionalized super paramagnetic carbon nanotubes. Chem Eng J 210:45–52

    Article  CAS  Google Scholar 

  • Zhang K, Kemp KC, Chandra V (2012b) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130

    Article  CAS  Google Scholar 

  • Zhang X, Du AJ, Lee P, Sun DD, Leckie JO (2008) TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation for humic acid in water. J Membr Sci 313:44–51

    Article  CAS  Google Scholar 

  • Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170(2–3):381–394

    Article  CAS  Google Scholar 

  • Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19(7):1648–1655

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Kuddus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, P., Yadav, S.K., Kuddus, M. (2020). Green Nanomaterials for Wastewater Treatment. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_9

Download citation

Publish with us

Policies and ethics