Skip to main content

Green Nanofillers for Polymeric Materials

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

Filler materials are commonly added to the polymer in the form of particles for various purposes, such as improving properties, to control processing and for economic benefits of the resulting polymer composite material. During the past five decades, much attention was given on synthetic fillers, such as CaCO3, TiO2, Al2O3, CNT and SiC. However, due to the concerns of environmental and depleting natural resources, researchers were started considering alternative fillers to the polymeric materials. They are moving towards green fillers and much advancement occurred in the past two decades. In this report, we focus on the review on the outline of various types of green nanofillers and their effect on the polymeric system. Green nanofillers are categorized based on their source, namely animal, plant and natural source. The latest progress on green nanofillers was also discussed. Their processing methods were discussed, and their effect on thermo-mechanical and physical properties was evaluated. The latest application of these green fillers was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah SI, Ansari MNM (2015) Mechanical properties of graphene oxide (GO)/epoxy composites. HBRC J 11:151–156

    Article  Google Scholar 

  • Asha A, Chandra Sekhar V (2014), Investigation on the mechanical properties of egg shell powder reinforced polymeric composites. Int J Eng Res Technol (IJERT) 3(12). ISSN: 2278-0181

    Google Scholar 

  • Bedanokov AJ et al. (2011) Polymer nanocomposites. N Engl J Med p 31

    Google Scholar 

  • Bergaya F, Detellier C, LambertJF LG (2013) Introduction to clay—polymer nanocomposites (CPN). In: Bergaya F, Lagaly G (eds) Handbook of clay science, vol 5, 2nd edn. UK Elsevier Ltd., Oxford, pp 655–677

    Chapter  Google Scholar 

  • Bootklad M, Kaewtatip K (2013) Biodegradation of thermoplastic starch/eggshell powder composites. Carbohyd Polym 97(2):315–320

    Article  CAS  Google Scholar 

  • Brody AL (2003) Nano, nano. Food packaging technology. Food Technol J 57(1):52–54

    Google Scholar 

  • Cho M, Park B (2011) Tensile and thermal properties of nanocellulose-reinforced poly (vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40

    Article  CAS  Google Scholar 

  • Clarke A (2018) United States Biodiesel Market (2018) Infinita renovables, neste oil. Diester Industries, Biopetrol and ADM, United States

    Google Scholar 

  • Cote J (2005) Konrad thermal conductivity of base-course materials Can. Geotech J 42(1):61–78

    Article  Google Scholar 

  • Dana DA (2012) The nanotechnology challenge, vol 6. Cambridge University Press, New York, p 177

    Google Scholar 

  • Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghat GH, Vahid S (2015) Improving the fracture toughness and the strength of epoxy using nanomaterials—a review of the current status. Nanoscale J 23:10294–10329

    Article  CAS  Google Scholar 

  • Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42(3):609–620

    Article  CAS  Google Scholar 

  • Fombuena V, Bernardi L, Fenollar O, Boronat T, Balart R (2014) Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Mater Des 57:168–174

    Article  CAS  Google Scholar 

  • Ghanbaria A, Tabarsaa T, Ashorib A, Shakeric A, Mashkour M (2018) Thermoplastic starch foamed composites reinforced with cellulose nanofibers. Therm Mech Prop

    Google Scholar 

  • Giorgi R, Chelazzi D, Baglioni P (2005) Nanoparticles of calcium hydroxide for wood conservation, vol 21, issue no 23. Department of Chemistry and CSGI, University of Florence, pp 10743–10748

    Google Scholar 

  • Guozhu M, Hongyang Z, Guanyi C, Huibin D, Jian Z (2015) Past, current and future of biomass energy research. Abibliometric analysis 52:1823–1833

    Google Scholar 

  • Gusev AI (2007) nanomaterials, nanostructures, and nanotechnologies. N Engl J Med p 416

    Google Scholar 

  • Hardy J, Römer L, Scheibel T (2008) Polymeric materials based on silk proteins. Polymer 49(20):4309–4327

    Article  CAS  Google Scholar 

  • Henry W (1991) The effect of starch on nano-materials. Ger Flatts 139–183

    Google Scholar 

  • Hiremath P, Shettar M, Shankar M, Mohan N (2018) Investigation on effect of egg shell powder on mechanical properties of GFRP composites. Mater Today Proc 5(1):3014–3018

    Article  CAS  Google Scholar 

  • Kaisangsri N, Kerdchoechuen O, Laohakunjit N (2012) Biodegradable foam tray from cassava starch blended with natural fiber and chitosan. Ind Crops Prod 37:542–546

    Article  CAS  Google Scholar 

  • Kamigaito O (1991) What can be improved by nanometer composites? J Jpn Soc Powder Powder Metall 38(3):315–321

    Article  CAS  Google Scholar 

  • Kestur GS, Flores-Sahagún TH, Dos Santos LP, Mazzaro I, Mikowski A (2013) Characterization of blue agave bagasse fibers of Mexico. Composites Part A Appl Sci Manuf 45:153–161

    Article  Google Scholar 

  • Khanam PN, Al-Maadeed MA, Khanam PN (2015) Advances in silk science and technology, silk as a reinforcement in polymer matrix composites. Woodhead Publishing Series in Textiles, pp 143–170

    Google Scholar 

  • Leceta I, Etxabide A, Cabezudo S, De La Caba K, Guerrero P (2014) Bio-based films prepared with by-products and wastes: environmental assessment. J Clean Prod 64:218–227

    Article  CAS  Google Scholar 

  • Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Sci Diction 321(5887):385–388

    CAS  Google Scholar 

  • Li Z, Liu Z, Li B, Li D, Li Q, Wang H (2014), MnO2 nanosilks self-assembled micropowders: facile one-step hydrothermal synthesis and their application as supercapacitor electrodes. J Taiwan Inst Chem Eng 45(6):2995–2999

    Article  CAS  Google Scholar 

  • Mirmehdi SM, Tonoli GHD, Dabbagh F (2015) Lignocellulose-polyethylene composite: influence of delignification, filler content and filler type

    Google Scholar 

  • Mustafa AM, Liyana J, Noor MN, Abdullah MMAB (2013) Mechanical properties of polymer composites with sugarcane baggasse filler. Adv Mater Res 739–744

    Google Scholar 

  • Nayaka R, Alengaram U, Jumaat M, Yusoff S, Alnahhal M (2018) High volume cement replacement by environmental friendly industrial by-product palm oil clinker powder in cement—lime masonry mortar. J Clean Prod 190:272–284

    Article  CAS  Google Scholar 

  • Ng P, Chia C-h, Zakaria S, Gan S (2015) Preparation of cellulose hydrogel from oil palm empty fruit bunch fibers cellulose. J Polym Res 9(4):449–459

    CAS  Google Scholar 

  • Nordstrom Y, Norberg I, Sijoholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129:1274–1279

    Article  Google Scholar 

  • Nwanonweyi SC, Chike-Onyegbula CH (2013) Water absorption, flammability and mechanical properties of linear low density polyethylene/egg shell composite, vol 4, issue no 1. Academic Research International. ISSN: 2223-9944

    Google Scholar 

  • Ranjbar N, Mehrali M, Behnia A, JohnsonAlengaram U, Jumaat MZ (2014) Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geo-polymer mortar. Sci Moving Forward 59:532–539

    CAS  Google Scholar 

  • Ranjbar N, Behnia A, Alsubari B, Birgani PM, Jumaat MZ (2015) Durability and mechanical properties of self-compacting concrete incorporating palm oil fuel ash, vol 12, issue no. 1. Department of Civil Engineering, Engineering Faculty, University of Malaya, 50603 Kuala Lumpur, Malaysia, pp 723–730

    Article  CAS  Google Scholar 

  • Saba N, Tahir PM, Abdan K, Ibrahim NA (2016) Fabrication of epoxy nanocomposites from oil palm nano filler: mechanical and morphological properties. Bioresources 11(3):7721–7736. https://doi.org/10.15376/biores.11.3.7721-7736

  • Saji J, Khare A, Choudhary RNP, Mahapatra SP (2015) Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites. Fibers Polym J 16(4):883–893

    Article  CAS  Google Scholar 

  • Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM (2012) Nanoclay nucleation effect in the thermal stabilization of a polymer nanocomposite: a kinetic mechanism change. J Phys Chem C 116:11797–11807

    Article  CAS  Google Scholar 

  • Singh K, Swami M (2015) Ecovision for a green growth: towards a renewable energy future, vol 2, issue no 8. M.S. College for Women, University of Delhi, Delhi, pp 828–833

    Google Scholar 

  • Starch Europe (2019) What is starch? What is it used for? Why do we need it? [online] Available at https://starch.eu/starch/. Accessed 18 July 2019

  • Sue HJ, Wang S, Jane J (1997) Morphology and mechanical behaviour of engineering soy plastics. J Polym 38:5035

    Article  CAS  Google Scholar 

  • Sui G, Zhong W, Liu M, Wu P (2009) Enhancing mechanical properties of an epoxy resin using liquid nano-reinforcements. Mater Sci Eng 512:139

    Article  Google Scholar 

  • Å upová M, Martynková GS, Barabaszová K (2011) Effect of nanofillers dispersion in polymer matrices. Sci Adv Mat 3:1–25

    Article  Google Scholar 

  • Theivasanthi T, Anne Christma F, Toyin A, Gopinath S, Ravichandran R (2018) Synthesis and characterization of cotton fiber-based nanocellulose. Int J Biol Macromol 109:832–836

    Article  CAS  Google Scholar 

  • Vincent JFV, Wegst UGK (2004) Design and mechanical properties of insect cuticle. Arthropod Struct Dev 33(3):187–199

    Article  Google Scholar 

  • Visakh PM, María J, Martínez M (2016) Nanomaterials and nano-composites. Mahatma Ghandhi University, India. 10.1002/9783527683772

    Google Scholar 

  • Wi K, Lee H, Lim S, Song H, Hussin M, Ismail M (2018) Use of an agricultural by-product, nano sized palm oil fuel ash as a supplementary cementitious material. Constr Build Mater 183:139–149

    Article  CAS  Google Scholar 

  • Wijesena R, Tissera N, Karunanayake L (2012), Preparation and characterization of α-Chitin nanofibers from crab shells of Portunus pelagicus (blue swimmer crab). In: Proceedings of international polymer science and technology symposium, vol 1

    Google Scholar 

  • Xu P, Zhao X, Niu D, Hoch M, Ma P, Dong W, Chen M, Deshmukh Y (2018) Superior reinforcement of ethyl-co-vinyl acetate rubber composites by using nano-sized starch filler: the role of particle size and reactive compatibilization. Eur Polym J 105:107–114

    Article  CAS  Google Scholar 

  • Yang H-S, Wolcott MP, Kim H-S, Kim H-J (2005) Thermal properties of lignocellulosic filler-thermoplastic polymer bio-composites. J Therm Anal Calorim 82(1):157–160

    Article  CAS  Google Scholar 

  • Yang H-S, Kim H-J, Park H-J, Lee B-J, Hwang T-S (2006) Water absorption behavior and mechanical properties of lignocellulosic filler polyolefin bio-composites. Compos Struct Sci Direct 72(4):429–437

    Article  Google Scholar 

  • Zhang T, Liu S, Cai G, Puppala AJ (2015) Experimental investigation of thermal and mechanical properties of lignin treated silt. Eng Geol 196:1–11

    Article  Google Scholar 

  • Zhao H, Feng X, Yu S, Cui W, Zou F (2005) Mechanical properties of silkworm cocoons. Polymer 46(21):9192–9201

    Article  CAS  Google Scholar 

  • Zhao H-P, Feng X-Q, Cui W-Z, Zou F-Z (2007) Mechanical properties of silkworm cocoon pelades. Eng Fract Mech 74(12):1953–1962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohan, T.P., Kanny, K. (2020). Green Nanofillers for Polymeric Materials. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_5

Download citation

Publish with us

Policies and ethics