Skip to main content

Characterisation of Green Nanomaterials

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

Green synthesis of nanoparticles is becoming popular due to its sustainability, eco-friendly and inexpensive approach. Production of submicron-sized particles from the biogenic sources is referred as green-mediated synthesis. Different kinds of green metal nanoparticles available are Ag, Au, Cu, Cd, Pt, Pd, Fe, and other metal oxides include ZnO, CeO2, TiO2, ZrO2, In2O3, Cu2O and CuO, PbS, Fe3O4. These nanoparticles are characterised for its surface morphology and its compositional structure. The common techniques employed for characterisation of metal and metal oxide nanoparticles include UV-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, energy dispersive spectroscopy (EDAX), atomic force microscopy (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), etc. The main characteristics that determine the properties and functionality of green nanomaterials are particle size, size distribution, crystallinity, specific surface area, surface morphology and elemental composition. Characterisation of green nanoparticles is significant to study about the nature, behaviour and functional properties of synthesised green nanoparticles (NPs). These NPs are well known for its antimicrobial and antioxidant effects as they have potential applications in food processing as in food packaging, food quality analysis and food/drug delivery systems. In order to find potential applications of green nanomaterials, characterisation of these nanoparticles is significant. This chapter essentially focusses on various characterisation techniques for the green-synthesised nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal N, Nair MS, Mazumder A (2018) Characterization of nanomaterials using nuclear magnetic resonance spectroscopy. In: Characterization of nanomaterials. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101973-3.00003-1

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum composite metal particles, and the atom to metal. Colloids Surf B: Biointerfaces 28:313–318

    Google Scholar 

  • Ahmed KBA, Kalla D, Uppuluri KB, Anbazhagan V (2014) Green synthesis of silver and gold nanoparticles employing levan, a biopolymer from Acetobacter xylinum NCIM 2526, as a reducing agent and capping agent. Carbohyd Polym 112:539–545. https://doi.org/10.1016/j.carbpol.2014.06.033

    Article  CAS  Google Scholar 

  • Alam TM, Jenkins JE (2012) HR-MAS NMR spectroscopy in material science. Intech Open 2:64. https://doi.org/10.5772/32009

    Article  Google Scholar 

  • Anake WU, Ana GR, Benson NU (2016) Study of surface morphology, elemental composition and sources of airborne fine particulate matter in Agbara industrial estate, Nigeria. Int J Appl Environ Sci 11(4):881–890

    Google Scholar 

  • Ando J, Yano T, Fujita K, Kawata S (2013) Metal nanoparticles for nano-imaging and nano-analysis. Phys Chem Chem Phys 15(33):13713–13722. https://doi.org/10.1039/c3cp51806j

    Article  CAS  Google Scholar 

  • Arokiyaraj S, Vincent S, Saravanan M, Oh YK, Kim KH (2016) Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. 1401 (March). https://doi.org/10.3109/21691401.2016.1160403

  • Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine 8:1307–1315

    Article  Google Scholar 

  • Asfaram A, Ghaedi M, Goudarzi A (2015) Solid-phase extraction for the determination of. New J Chem 39:9813–9823. https://doi.org/10.1039/C5NJ01730K

    Article  CAS  Google Scholar 

  • Asou HM, Al-antary M, Awwad AM (2018) Environmental nanotechnology, monitoring & management green route for synthesis hematite (α-Fe2O3) nanoparticles: toxicity e ffect on the green peach aphid. Myzus persicae (Sulzer) 9:107–111. https://doi.org/10.1016/j.enmm.2018.01.004

    Article  Google Scholar 

  • Bai RG, Sabouni R, Husseini G (2018) Green Nanotechnology—A Road Map to Safer Nanomaterials. In: Applications of Nanomaterials, Elsevier Ltd. https://doi.org/10.1016/B978-0-08-101971-9.00006-5

  • Bandyopadhyay S (2013) Advanced analytical techniques for the measurement of nanomaterials in food and agricultural samples: a review 1, 30(3): 118–125. https://doi.org/10.1089/ees.2012.0325

  • Bhattacherjee A, Ghosh T, Datta A (2018) Green synthesis and characterisation of antioxidant-tagged gold nanoparticle (X-GNP) and studies on its potent antimicrobial activity. J Exp Nanosci 13(1):50–61. https://doi.org/10.1080/17458080.2017.1407042

    Article  CAS  Google Scholar 

  • Biao L, Tan S, Meng Q, Gao J, Zhang X, Liu Z, Fu Y (2018) Green synthesis, characterization and application of proanthocyanidins-functionalized gold nanoparticles. Nanomaterials 8(1):53. https://doi.org/10.3390/nano8010053

    Article  CAS  Google Scholar 

  • Bishnoi A, Kumar S, Joshi N (2017) Wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites. In: Microscopy Methods in Nanomaterials Characterization, Elsevier, pp 313–337

    Google Scholar 

  • Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4):289–299

    Article  CAS  Google Scholar 

  • Chen M, Wang X, Yu YH, Pei ZL, Bai XD, Sun C, Wen LS (2000) X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films. Appl Surf Sci 158(1):134–140. https://doi.org/10.1016/S0169-4332(99)00601-7

    Article  CAS  Google Scholar 

  • Cheng F, Su C, Yang Y, Yeh C (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications 26: 729–738. https://doi.org/10.1016/j.biomaterials.2004.03.016

  • Costa S, Borowiak-Palen E, Kruszynska M, Bachmatiuk A, Kalenczuk R (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci Poland 26(2):433–441

    CAS  Google Scholar 

  • Crozier A, Jaganath IB, Clifford MN, Crozier A, Jaganath B, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. 26(8). https://doi.org/10.1039/b802662a

  • Davar F, Fereshteh Z, Salavati-niasari M (2009) Nanoparticles Ni and NiO: synthesis, characterization and magnetic properties 476:797–801. https://doi.org/10.1016/j.jallcom.2008.09.121

  • David L, Moldovan B, Vulcu A, Olenic L, Perde-schrepler M, Fischer-fodor E, Adriana G (2014) Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surfaces B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2014.08.018

  • De Oliveira O, Marystela F, de Lima Leite F, Da Róz AL (2017) Nanocharacterization Techniques. Matthew Deans. https://doi.org/10.1016/B978-0-323-49778-7.00001-1

    Article  Google Scholar 

  • Devience SJ, Pham LM, Lovchinsky I, Sushkov AO, Bar-gill N, Belthangady C, Walsworth RL (2015) Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nature Nanotechnol, 2–7. https://doi.org/10.1038/nnano.2014.313

  • Dipankar C, Murugan S (2012) Colloids and Surfaces B: Biointerfaces The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B 98:112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006

    Article  CAS  Google Scholar 

  • Dixon R (2005). Proanthocyanidins—a final frontier in

    Google Scholar 

  • Djuris AB, Leung YH, Ng AMC, Xu XY, Lee PK, Degger N, Wu RS (2014) Toxicity of metal oxide nanoparticles: mechanisms, characterization, and avoiding experimental artefacts. pp 1–19. https://doi.org/10.1002/smll.201303947

  • Faix O (1992) Fourier transform infrared spectroscopy. Methods Lignin Chem pp 83–109. https://doi.org/10.1007/978-3-642-74065-7_16

  • Ferri FA, Perreira-da-Silva MDA, Marega E (2012) Atomic force microscopy-imaging, measuring and manipulating surfaces at the atomic scale. In: Bellitto V (ed) InTech, p 268

    Google Scholar 

  • Gangadoo S, Chapman J (2015) Nanoparticle and biomaterial characterisation techniques, 30. https://doi.org/10.1179/1753555714Y.0000000201

  • García-Betancourt ML, Rahier H, Van Assche G (2018)Physicochemical characterization of nanomaterials: polymorph, composition, wettability, and thermal stability. In: Emerging applications of nanoparticles and architecture nanostructures, Elsevier Inc. https://doi.org/10.1016/B978-0-323-51254-1.00009-9

  • Gogoi N, Jayasekhar P, Mahanta C, Bora U (2015) Green synthesis and characterization of silver nanoparticles using alcoholic fl ower extract of Nyctanthes arbortristis and in vitro investigation of their antibacterial and cytotoxic activities. Mater Sci Eng C 46:463–469. https://doi.org/10.1016/j.msec.2014.10.069

    Article  CAS  Google Scholar 

  • Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JH, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis, Springer

    Google Scholar 

  • Gopi D, Kanimozhi K, Bhuvaneshwari N, Indira J, Kavitha L (2014) Novel banana peel pectin mediated green route for the synthesis of hydroxyapatite nanoparticles and their spectral characterization. Spectrochim Acta Part A Mol Biomol Spectrosc 118:589–597. https://doi.org/10.1016/j.saa.2013.09.034

    Article  CAS  Google Scholar 

  • Goyal RK (2017) Nanomaterials and nanocomposites: synthesis, properties, characterization techniques, and applications, CRC Press

    Google Scholar 

  • Hafner B (2006) Energy dispersive spectroscopy on the SEM: a primer. In: Characterization Facility, University of Minnesota, pp 1–26

    Google Scholar 

  • Hall JB, Dobrovolskaia MA, Patri AK, McNeil SE (2007) Characterization of nanoparticles for therapeutics

    Google Scholar 

  • Henning S, Adhikari R (2017) Scanning electron microscopy, ESEM, and X-ray microanalysis. In: Microscopy Methods in Nanomaterials Characterization, Elsevier, pp. 1–30

    Google Scholar 

  • Hollander JM, Jolly WL (1970) X-ray photoelectron spectroscopy. Acc Chem Res 3(6):193–200

    Article  CAS  Google Scholar 

  • https://en.Wikipedia.org/wiki/Ultraviolet%E2%80%93visible_spectroscopy

  • https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy#/media/File:System2.gif

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotech Lett 38(4):545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  Google Scholar 

  • Hyllested JÆ, Palanco ME, Hagen N, Mogensen KB (2015) Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents, pp 293–299. https://doi.org/10.3762/bjnano.6.27

  • Instruments N (1999) Energy-dispersive x-ray microanalysis an introduction. Noran Instruments Inc., Middleton

    Google Scholar 

  • Jaggi N, Vij DR (2006) Fourier transform infrared, pp 411–450

    Google Scholar 

  • Jain A, Ranjan S, Dasgupta N, Ramalingam C (2018) Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 58(2):297–317. https://doi.org/10.1080/10408398.2016.1160363

    Article  CAS  Google Scholar 

  • Jiang X, Jiang J, Jin Y, Wang E, Dong S (2005). Effect of colloidal gold size on the conformational changes of adsorbed cytochrome c: probing by circular dichroism, UV—Visible, and Infrared Spectroscopy, pp 46–53

    Google Scholar 

  • Johal MS (2012) Understanding nanomaterials, CRC Press

    Google Scholar 

  • Kale RD, Jagtap P (2018) Biogenic synthesis of silver nanoparticles using Citrus Limon leaves and its structural investigation, pp 11–20. https://doi.org/10.1007/978-981-10-7122-5_2

  • Khan AU, Malik N, Khan M, Hwan M (2017) Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-017-1846-3

    Article  Google Scholar 

  • Khan MK, Wang QY, Fitzpatrick ME (2016) Atomic force microscopy (AFM) for materials characterization. In: Materials Characterization Using Nondestructive Evaluation (NDE) Methods, Elsevier, pp 1–16

    Google Scholar 

  • Khan M, Albalawi GH, Shaik MR, Khan M, Adil SF, Kuniyil M, Alkhathlan HZ, Al-Warthan A, Siddiqui MRH (2017) Miswak mediated green synthesized palladium nanoparticles as effective catalysts for the Suzuki coupling reactions in aqueous media. J Saudi Chem Soc 21(4):450–457. https://doi.org/10.1039/b615357g.

  • Khan ZUH, Khan A, Chen YM, Shah NS, Khan AU, Muhammad N, Wan P (2018) Enhanced antimicrobial, anti-oxidant applications of green synthesized AgNPs- an acute chronic toxicity study of phenolic azo dyes & study of materials surface using X-ray photoelectron spectroscopy. J Photochem Photobiol B 180:208–217. https://doi.org/10.1016/j.jphotobiol.2018.02.015

    Article  CAS  Google Scholar 

  • Khitrov GA, Strouse GF (2003) ZnS nanomaterial characterization by MALDI-TOF mass spectrometry 10: 10465–10469

    Google Scholar 

  • Kneipp J, Kneipp H, Wittig B, Kneipp K (2010) Novel optical nanosensors for probing and imaging live cells. Nanomed Nanotechnol Biol Med 6(2): 214–226. https://doi.org/10.1016/j.nano.2009.07.009

  • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures protein FTIR data analysis and band assign 39(20745001):549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x

    Article  CAS  Google Scholar 

  • Konno H (2016) X-ray Photoelectron Spectroscopy. In: Materials Science and Engineering of Carbon, Tsinghua University Press Limited. https://doi.org/10.1016/B978-0-12-805256-3.00008-8

  • Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Mater Lett 76:18–20. https://doi.org/10.1016/j.matlet.2012.02.025

    Article  CAS  Google Scholar 

  • Kumar J, Thomas KG (2011) Nanorod edges and dimer junctions

    Google Scholar 

  • Kumar U, Ankamwar B, Karmakar S, Halder A (2018) Science direct green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. Mater Today Proc 5(1):2321–2329. https://doi.org/10.1016/j.matpr.2017.09.236

    Article  CAS  Google Scholar 

  • Li X, Zhang W (2007) Sequestration of metal cations with Zerovalent Iron nanoparticles: a study with high resolution X-ray Photoelectron Spectroscopy (HR-XPS). J Phys Chem C Saudi Chem Soc 111(19): 6939–6946. https://doi.org/10.1021/jp0702189. https://doi.org/10.1016/j.jscs.2016.03.008

  • Lee SH, Heng Desmond, Ng WK, Chan H-K, Tan RBH (2011) Nano spray drying: a novel method for preparing protein nanoparticles for protein therapy. Int J Pharm 403(1–2):192–200

    Article  CAS  Google Scholar 

  • Lin PC, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32(4):711–726. https://doi.org/10.1016/j.biotechadv.2013.11.006

    Article  Google Scholar 

  • Liu S, Wang Y (2010) Application of AFM in microbiology: a review. Scanning 32(2):61–73

    Article  CAS  Google Scholar 

  • Liu S, Wang Y (2011) A review of the application of atomic force microscopy (AFM) in food science and technology. In: Advances in food and nutrition research, Elsevier, pp 201–240

    Google Scholar 

  • Liu J, Jiang P, He C, Jiang X, Lu L (2018) Preparation and characterization of Ag @ C composites with hexagon silver core and controllable carbon shell for surface-enhanced Raman scattering, pp 3443–3454. https://doi.org/10.1007/s10853-017-1801-3

  • López-Sanz S, Fariñas NR, Vargas RS, Martín-Doimeadios RDCR, Ríos Á (2017) Methodology for monitoring gold nanoparticles and dissolved gold species in culture medium and cells used for nanotoxicity tests by liquid chromatography hyphenated to inductively coupled plasma-mass spectrometry. Talanta 164:451–457. https://doi.org/10.1016/j.talanta.2016.11.060

  • Luo F, Yang D, Chen Z, Megharaj M, Naidu R (2016) One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade Orange II. J Hazard Mater 303:145–153

    Article  CAS  Google Scholar 

  • Lupoi JS, Singh S, Simmons BA, Henry RJ (2014) Assessment of Lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res 7(1):1–23. https://doi.org/10.1007/s12155-013-9352-1

    Article  CAS  Google Scholar 

  • Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane 212:219–226

    CAS  Google Scholar 

  • Marbella LE, Millstone JE (2015) NMR techniques for noble metal nanoparticles. https://doi.org/10.1021/cm504809c

  • Mayeen A, Shaji LK, Nair AK, Kalarikkal N (2018) Morphological characterization of nanomaterials. In: Characterization of Nanomaterials, Elsevier, pp 335–364

    Google Scholar 

  • Medina-Ramirez I, Bashir S, Luo Z, Liu JL (2009) Green synthesis and characterization of polymer-stabilized silver nanoparticles. Colloids Surf B 73(2):185–191. https://doi.org/10.1016/j.colsurfb.2009.05.015

    Article  CAS  Google Scholar 

  • Miguel L, Rivera R, Silva LP (2018) https://doi.org/10.1016/j.matchemphys.2018.05.068 (Accepted Manuscript)

  • Michler GH (2008) Electron microscopy of polymers, Springer Science & Business Media

    Google Scholar 

  • Mishra RK, Zachariah AK, Thomas S (2017) Energy-dispersive X-ray spectroscopy techniques for nanomaterial. In: Microscopy Methods in Nanomaterials Characterization, Elsevier, pp 383–405

    Google Scholar 

  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum, p 075103. https://doi.org/10.1088/0957-4484/19/7/075103

  • Muñetón D, Santillán JMJ, Arce VB, Fernández MB , Raap V, Muraca D, Sca LB (2018) Materials characterization a simple and “green” technique to synthesize long-term stability colloidal Ag nanoparticles: Fs laser ablation in a biocompatible aqueous medium, vol 140, pp 320–332. https://doi.org/10.1016/j.matchar.2018.04.021

  • Nagajyothi PC, Pandurangan M, Veerappan M, Kim DH, Sreekanth TVM, Shim J (2017) Green synthesis, characterization and anticancer activity of yttrium oxide nanoparticles. Mater Lett. https://doi.org/10.1016/j.matlet.2017.12.081

    Article  Google Scholar 

  • Pesila NS, Kathleen JS, Searson PC (2003) Relationship between absorbance spectra and particle size distributions for quantum-sized nanocrystals, pp 10412–10415. https://doi.org/10.1021/jp0303218

  • Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry, pp 9361–9369

    Google Scholar 

  • Patel NH (2015). Basic principle, working and instrumentation of experimental techniques

    Google Scholar 

  • Paterson E, Swaffield R (1994) X-ray photoelectron spectroscopy

    Google Scholar 

  • Plachtova P, Med Z, Zbo R, Varma RS, Maršálek B (2018) Iron and iron oxide nanoparticles synthesized using green tea extract: differences in ecotoxicological profile and ability to degrade malachite green. https://doi.org/10.1021/acssuschemeng.8b00986

  • Pleul D, Simon F (2008) X ray photoelectron spectroscopy. Polymer Surf Interfaces, pp 71–89. https://doi.org/10.1007/978-3-540-73864-0

  • Popovic ZV, Mitrovic ZD, Scepanoviv M, Brojčinm M, Askrabic S (2011) Raman scattering on nanomaterials and nanostructures, 74(1): 62–74. https://doi.org/10.1002/andp.201000094

  • Rana S, Philip J, Raj B (2010) Micelle based synthesis of cobalt ferrite nanoparticles and its characterization using Fourier transform infrared transmission spectrometry and thermogravimetry. Mater Chem Phys 124(1):264–269. https://doi.org/10.1016/j.matchemphys.2010.06.029

    Article  CAS  Google Scholar 

  • Rao YS, Kotakadi VS, Prasad TNVKV, Reddy AV, Gopal DS (2013) Green synthesis and spectral characterization of silver nanoparticles from Lakshmi tulasi (Ocimum sanctum) leaf extract. Spectrochim Acta Part A: Mol Biomol Spectrosc 103:156–159

    Google Scholar 

  • Ritheshraj D, Prasanth S, Vineeshkumar TV, Sudarsanakumar C (2015) Sens Actuators B Chem. https://doi.org/10.1016/j.snb.2015.10.106

    Article  Google Scholar 

  • Roming M, Feldmann C, Avadhut YS (2008) Characterization of noncrystalline nanomaterials: NMR of Zinc Phosphate as a case study. Chem Mater 4:5787–5795

    Article  Google Scholar 

  • Rosbero TMS, Camacho DH (2017) Green preparation and characterization of tentacle-like silver/ copper. Biochem Pharm. https://doi.org/10.1016/j.jece.2017.05.009

    Article  Google Scholar 

  • Roushani M, Mavaei M, Rajabi HR (2015) Graphene quantum dots as novel and green nano-materials for the visible-light-driven photocatalytic degradation of cationic dye, Elsevier B.V. https://doi.org/10.1016/j.molcata.2015.08.011

  • Salame PH, Pawade VB, Bhanvase BA (2018) Characterization tools and techniques for nanomaterials. In: Nanomaterials for green energy, Elsevier, pp 83–111

    Google Scholar 

  • Sarmento B, Ferreira D, Veiga F, Ribeiro A (2006) Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydr Polym 66(1):1–7

    Google Scholar 

  • Sathyavathi R, Krishna MB, Rao SV, Saritha R, Rao DN (2010) Biosynthesis of silver nanoparticles using Coriandrum Sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3(2):1–6. https://doi.org/10.1166/asl.2010.1099

    Article  CAS  Google Scholar 

  • Saxena A, Tripathi RM, Singh RP (2010) Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their antibacterial activity. Digest J Nanomaterials Biostructures 5(2):427–432

    Google Scholar 

  • Schmidt B, Loeschner K, Hadrup N, Mortensen A, Sloth JJ, Koch CB, Larsen EH (2011) Quantitative characterization of gold nanoparticles by field-flow fractionation coupled online with light scattering detection and inductively coupled plasma mass spectrometry. Anal Chem 83:2461–2468

    Article  CAS  Google Scholar 

  • Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13(6):6639–6650. https://doi.org/10.3390/ijms13066639

    Article  CAS  Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18(22):225103.

    Google Scholar 

  • Singhal G, Bhavesh R (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity, 2981–2988. https://doi.org/10.1007/s11051-010-0193-y

  • Song Y, Bhushan B (2007) Finite-element vibration analysis of tapping-mode atomic force microscopy in liquid. Ultramicroscopy 107(10–11):1095–1104

    Article  CAS  Google Scholar 

  • Song JY, Jang H, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44:1133–1138. https://doi.org/10.1016/j.procbio.2009.06.005

    Article  CAS  Google Scholar 

  • Stuart B (2005) Infrared spectroscopy 1(1): 1–20

    Google Scholar 

  • Subramanian A, Rodriguez-Saona L (2009) Fourier Transform Infrared (FTIR) spectroscopy. In: Sun DW (ed) Infrared spectroscopy for food quality analysis and control. Academic Press, pp 145–178.

    Google Scholar 

  • Suganya KSU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng, C 47:351–356. https://doi.org/10.1016/j.msec.2014.11.043

    Article  CAS  Google Scholar 

  • Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C (2014) Colloids and surfaces a: physicochemical and engineering aspects green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A Physicochem Eng Aspects 444:226–231. https://doi.org/10.1016/j.colsurfa.2013.12.065

    Article  CAS  Google Scholar 

  • Suzuki E (2002) High-resolution scanning electron microscopy of immunogold-labelled cells by the use of thin plasma coating of osmium. J Microsc 208(3):153–157

    Article  CAS  Google Scholar 

  • Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y (1988) Protein and polymer analyses up to mlz 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2(8):151–153

    Article  CAS  Google Scholar 

  • Taylor P, Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Food additives & contaminants: part a detection and characterization of engineered nanoparticles in food and the environment, pp 37–41. https://doi.org/10.1080/02652030802007553. Oct 2012

  • Thovhogi N, Diallo A, Gurib-fakim A, Maaza M (2015) Nanoparticles green synthesis by Hibiscus Sabdariffa flower extract: main physical properties. J Alloys Compd 647:392–396. https://doi.org/10.1016/j.jallcom.2015.06.076

    Article  CAS  Google Scholar 

  • Tiede K, Boxall ABA, Tear SP, Lewis J, David H, Hassellöv M (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25(7):795–821

    Article  CAS  Google Scholar 

  • Tripathi DK et al (2018) Nanomaterials in plants, algae, and microorganisms: concepts and controversies, vol 1. https://doi.org/10.1016/C2016-0-00176-6

  • Ulug B, Haluk Turkdemir M, Cicek A, Mete A (2015) Role of irradiation in the green synthesis of silver nanoparticles mediated by fig (Ficus carica) leaf extract. Spectrochim Acta Part A Mol Biomol Spectrosc 135:153–161. https://doi.org/10.1016/j.saa.2014.06.142

    Article  CAS  Google Scholar 

  • Veisi H, Azizi S, Mohammadi P (2017) Green synthesis of the silver nanoparticles mediated by Thymbra spicata extract and its application as a heterogeneous and recyclable nanocatalyst for catalytic reduction of a variety of dyes in water. J Cleaner Prod. https://doi.org/10.1016/j.jclepro.2017.09.265

    Article  Google Scholar 

  • Walther T (2017) Transmission electron microscopy of nanostructures. In: Microscopy Methods in Nanomaterials Characterization, Elsevier, pp 105–134

    Google Scholar 

  • Wang ZL (1999) Transmission electron microscopy and spectroscopy of nanoparticles. Charact Nanophase Mater 3:37–80

    Article  Google Scholar 

  • Wang Y, Irudayaraj J, Irudayaraj J (2012) Surface-enhanced Raman spectroscopy at single-molecule scale and its implications in biology

    Google Scholar 

  • Weckhuysen BM (2004) Ultraviolet-visible spectroscopy, pp 255–270

    Google Scholar 

  • Weng X, Guo M, Luo F, Chen Z (2017) One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: Biomolecules identification, characterization and catalytic activity. Chem Eng J 308:904–911. https://doi.org/10.1016/j.cej.2016.09.134

    Article  CAS  Google Scholar 

  • Williams DB, Carter CB (2009) The transmission electron microscope. In: Transmission electron microscopy: a textbook for materials science, Springer, Boston, MA, US, pp 3–22

    Google Scholar 

  • Yamaura M, Camilo RL, Sampaio LC, Macêdo MA, Nakamura M, Toma HE (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279(2–3):210–217. https://doi.org/10.1016/j.jmmm.2004.01.094

    Article  CAS  Google Scholar 

  • Yang Z, Xing Z, Xu J, Liu X, Lei Y (2018) A new synthetic strategy of Ag-TiO2 Nanocomposites based on Ligand-to-Metal charge transfer under visible light irradiation: characterizations and photocatalytic activity. Phys Status Solidi (A) 215(14):1800026. https://doi.org/10.1002/pssa.201800026

    Article  CAS  Google Scholar 

  • Yu J, Wang H, Zhan J, Huang W (2017) Review of recent UV-Vis and infrared spectroscopy researches on wine detection and discrimination. https://doi.org/10.1080/05704928.2017.1352511

  • Yuvakkumar R, Suresh J, Nathanael AJ, Sundrarajan M, Hong SI (2014) Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng, C 41:17–27. https://doi.org/10.1016/j.msec.2014.04.025

    Article  CAS  Google Scholar 

  • Zhang J, Higashi K, Limwikrant W, Moribe K, Yamamoto K (2012) Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy. Int J Pharm 423(2):571–576. https://doi.org/10.1016/j.ijpharm.2011.11.028

    Article  CAS  Google Scholar 

  • Zhang Y, Yu W, Pei L, Lai K, Rasco BA, Huang Y (2015) Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering. Food Chem 169:80–84. https://doi.org/10.1016/j.foodchem.2014.07.129

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Moses .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anukiruthika, T., Priyanka, S., Moses, J.A., Anandharamakrishnan, C. (2020). Characterisation of Green Nanomaterials. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_3

Download citation

Publish with us

Policies and ethics