Skip to main content

Tissue Engineering Applications of Bacterial Cellulose Based Nanofibers

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

Bacterial cellulose derived extracellularly by specific bacterial genera is an environmentally friendly polymeric material. The structural properties of bacterial cellulose are greater to those of herbal cellulose, as BC possesses novel features such as high purity, high crystallinity, nanostructure networks, good light transmittance, remarkable mechanical properties, stress–strain characterization and in situ formability, porosity, uniformity, inherent biocompatibility, and improvement of cell enhancing, separation, and proliferation. In recent years, bacterial cellulose has many opportunity purposes in different applications in biomedicine such as wound-dressing materials, medical membranes, biosensors, regeneration of organs, pharmaceutical industries, food, and cosmetics. Herein, the potential applications of bacterial cellulose, alone or in combination with different components, have been focused on for the use in the regenerative and tissue engineering as an implant and scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade FK, Costa R, Domingues L, Soares R, Gama M (2010) Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide. Acta Biomater 6(10):4034–4041

    Article  CAS  Google Scholar 

  • Ahmed M, Hamilton G, Seifalian AM (2014) The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 35(33):9033–9040

    Article  CAS  Google Scholar 

  • Ashton JH, Mertz JA, Harper JL, Slepian MJ, Mills JL, McGrath DV, Geest JV (2011) Polymeric endoaortic paving: mechanical, thermoforming, and degradation properties of polycaprolactone/polyurethane blends for cardiovascular applications. Acta Biomater 7(1):287–294

    Article  CAS  Google Scholar 

  • Ao C, Niu Y, Zhang X, He X, Zhang W, Lu C (2017) Fabrication and characterization of electrospun cellulose/nano-hydroxyapatite nanofibers for bone tissue engineering. Int J Biol Macromol 97:568–573

    Article  CAS  Google Scholar 

  • Ávila MH, Schwarz S, Feldmann EM, Mantas A, Von Bomhard A, Gatenholm P et al (2014) Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl Microbiol Biotechnol 98:7423–7435

    Article  CAS  Google Scholar 

  • Backdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141–2149

    Article  CAS  Google Scholar 

  • Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544

    Article  CAS  Google Scholar 

  • Barozzi L, Brizard CP, Galati JC, Konstantinov IE, Bohuta L, d’Udekem Y (2011) Side-to-side aorto-GoreTex central shunt warrants central shunt patency and pulmonary arteries growth. Ann Thoracic Surg 92(4):1476–1482

    Article  Google Scholar 

  • Bielecki SE, Krystynowicz AE, Turkiewicz M, Kalinowska HE (2005) Bacterial cellulose. Biopolymers Online. 5. Polysaccharides from prokaryotes. Wiley Online Library. https://doi.org/10.01002/3527600035.bpol5003

  • Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regenerative Med 1(5):406–408

    Article  CAS  Google Scholar 

  • Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31:8889–8901

    Article  CAS  Google Scholar 

  • Bostrom MP, Asnis P (1998) Transforming growth factor beta in fracture repair. Clin Orthop Relat Res® 355:S124–S131

    Google Scholar 

  • Bourne RR, Dineen BP, Huq DMN, Ali SM, Johnson GJ (2004) Correction of refractive error in the adult population of Bangladesh: meeting the unmet need. Invest Ophthalmol Vis Sci 45(2):410–417

    Article  Google Scholar 

  • Brager MA, Patterson MJ, Connolly JF, Nevo Z (2000) Osteogenic growth peptide normally stimulated by blood loss and marrow ablation has local and systemic effects on fracture healing in rats. J Orthop Res 18(1):133–139

    Article  CAS  Google Scholar 

  • Brown AJ (1886) J Chem Soc 49, 51:172, 432, 643

    Google Scholar 

  • Brown EE, Laborie M-PG, Zhang J (2011) Glutaraldehyde treatment of bacterial cellulose/fibrin composites: impact on morphology, tensile and viscoelastic properties. Cellulose 19(1):127–137

    Article  CAS  Google Scholar 

  • Burugapalli K, Pandit A (2007) Characterization of tissue response and in vivo degradation of cholecyst-derived extracellular matrix. Biomacromol 8(11):3439–3451

    Article  CAS  Google Scholar 

  • Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17(1):83–91

    Article  CAS  Google Scholar 

  • Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 1205:2938–2944

    Google Scholar 

  • Cavicchioli M, Corso CT, Coelho F, Mendes L, Saska S, Soares CP et al (2015) Characterization and cytotoxic, genotoxic and mutagenic evaluations of bacterial cellulose membranes incorporated with ciprofloxacin: a potential material for use as therapeutic contact lens. World J Pharm Pharm Sci 4:1626–1647

    CAS  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47(2)

    Google Scholar 

  • Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, Dai J et al (2007a) Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 28(6):1027–1035

    Article  CAS  Google Scholar 

  • Chen S, Zou Y, Yan Z, Shen W, Shi S, Zhang X, Wang H (2009) Carboxymethylated-bacterial cellulose for copper and lead ion removal. J Hazard Mater 161(2–3):1355–1359

    Article  CAS  Google Scholar 

  • Chen ZX, Chang M, Peng YL, Zhao L, Zhan YR, Wang LJ, Wang R (2007b) Osteogenic growth peptide C-terminal pentapeptide [OGP (10–14)] acts on rat bone marrow mesenchymal stem cells to promote differentiation to osteoblasts and to inhibit differentiation to adipocytes. Regul Pept 142(1–2):16–23

    Article  CAS  Google Scholar 

  • Chong DST, Lindsey B, Dalby MJ, Gadegaard N, Seifalian AM, Hamilton G (2014) Luminal surface engineering, ‘Micro and nanopatterning’: potential for self endothelialising vascular grafts? Eur J Vasc Endovasc Surg 47(5):566–576

    Article  CAS  Google Scholar 

  • Czaja W, Romanovicz D, Malcolm Brown R (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3–4):403–411

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27(2):145–151

    Article  CAS  Google Scholar 

  • Dahlin C, Linde A, Gottlow J, Nyman S (1988) Healing of bone defects by guided tissue regeneration. Plastic Reconstr Surg 81(5):672–676

    Article  CAS  Google Scholar 

  • Das SK, Kumar A, Sharma GK, Pandey AK, Bansal H, Trivedi S, Singh PB et al (2009) Lingual mucosal graft urethroplasty for anterior urethral strictures. Urology 73(1):105–108

    Article  Google Scholar 

  • Eming SA, Smola H, Krieg T (2002) The treatment of chronic wounds: current concepts and future aspects. Cells Tissues Organs 172:105–117

    Article  CAS  Google Scholar 

  • Fang B, Wan YZ, Tang TT, Gao C, Dai KR (2009) Proliferation and osteoblastic differentiation of human bone marrow stromal cells on hydroxyapatite/bacterial cellulose nanocomposite scaffolds. Tissue Eng Part A 15(5):1091–1098

    Article  CAS  Google Scholar 

  • Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029

    Article  CAS  Google Scholar 

  • Foster A (2003) Vision 2020—the right to sight. Trop Doct 33(4):193–194

    Article  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bañó MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5(5):1605–1615

    Article  CAS  Google Scholar 

  • Grasl C, Bergmeister H, Stoiber M, Schima H, Weigel G (2010) Electrospun polyurethane vascular grafts: in vitro mechanical behavior and endothelial adhesion molecule expression. J Biomed Mater Res Part A: Official J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 93(2):716–723

    Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21(14):6642–6646

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58(2):345

    Google Scholar 

  • Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng, C 29(4):1216–1219

    Article  CAS  Google Scholar 

  • Hui J, Yuanyuan J, Jiao W, Yuan H, Yuan Z, Shiru J (2009) Potentiality of bacterial cellulose as the scaffold of tissue engineering of cornea. In: 2nd international conference on biomedical engineering and informatics, BMEI’09, pp 1–5

    Google Scholar 

  • Huang JW, Lv XG, Li Z, Song LJ, Feng C, Xie MK et al (2015) Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model. Biomed Mater 10:055005

    Article  CAS  Google Scholar 

  • Huang Y, Wang J, Yang F, Shao Y, Zhang X, Dai K (2017) Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. Mater Biol Appl 75:1034 (Materials Science & Engineering C)

    Google Scholar 

  • Isenberg BC, Williams C, Tranquillo RT (2006) Small-diameter artificial arteries engineered in vitro. Circ Res 98:25–35

    Article  CAS  Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106

    Article  CAS  Google Scholar 

  • Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR et al (2004) The prevalence of refractive errors among adults in the United States, Western Europe and Australia. Arch Ophthalmol 122:495–505

    Article  Google Scholar 

  • Khajavi R, Esfahani JE, Sattari M (2011) Crystalline structure of microbial cellulose compared with native and regenerated cellulose. Int J Polym Mater 60(14):1178–1192. https://doi.org/10.01080/00914037.2010551372

    Article  CAS  Google Scholar 

  • Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18(4):739–744

    Article  CAS  Google Scholar 

  • Kharaghani D, Meskinfam M, Rezaeikanavi M, Balagholi S, Fazili N (2015) Synthesis and characterization of hybrid nanocomposite via biomimetic method as an artificial cornea. Invest Ophthalmol Vis Sci 56(7):5024

    Google Scholar 

  • Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Park JK et al (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose–gelatin composite scaffolds for tissue engineering applications. RSC Adv 6(112):110840–110849

    Article  CAS  Google Scholar 

  • Khan S, Ul-Islam M, Ikram M, Islam SU, Ullah MW, Israr M, Park JK et al (2018) Preparation and structural characterization of surface modified microporous bacterial cellulose scaffolds: a potential material for skin regeneration applications in vitro and in vivo. Int J Biol Macromol 117:1200–1210

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26(9):1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edn 44:3358–3393

    Article  CAS  Google Scholar 

  • Kolpak FJ, Blackwell J (1976) Determination of the structure of cellulose II. Macromolecules 9(2):273–278

    Article  CAS  Google Scholar 

  • Kowalska-Ludwicka K, Cala J, Grobelski B, Sygut D, Jesionek-Kupnicka D, Kolodziejczyk M et al (2013) Modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch Med Sci 9:527–534

    Article  Google Scholar 

  • Kudo FA, Nishibe T, Miyazaki K, Flores J, Yasuda K (2002) Albumin-coated knitted Dacron aortic prostheses: study of postoperative inflammatory reactions. Int Angiol 21(3):214

    CAS  Google Scholar 

  • Kuga S, Jr Malcolm Brown R (1988) Silver labeling of the reducing ends of bacterial cellulose. Carbohydr Res 180(2):345–350

    Article  CAS  Google Scholar 

  • Kumbhar JV, Jadhav SH, Bodas DS, Barhanpurkar-Naik A, Wani MR, Paknikar KM, Rajwade JM (2017) In vitro and in vivo studies of a novel bacterial cellulose-based acellular bilayer nanocomposite scaffold for the repair of osteochondral defects. Int J Nanomed 12:6437

    Article  CAS  Google Scholar 

  • Lessim S, Oughlis S, Lataillade JJ, Migonney V, Changotade S, Lutomski D, Poirier F (2015) Protein selective adsorption properties of a polyethylene terephtalate artificial ligament grafted with poly (sodium styrene sulfonate)(polyNaSS): correlation with physicochemical parameters of proteins. Biomed Mater 10(6):065021

    Article  CAS  Google Scholar 

  • Lee SE, Park YS (2017) The role of bacterial cellulose in artificial blood vessels. Mol Cell Toxicol 13(3):257–261

    Article  CAS  Google Scholar 

  • Leitão AF, Silva JP, Dourado F, Gama M (2013) Production and characterization of a new bacterial cellulose/poly (vinyl alcohol) nanocomposite. Materials 6(5):1956–1966

    Article  CAS  Google Scholar 

  • Leitão AF, Faria MA, Faustino AM, Moreira R, Mela P, Loureiro L, Gama M et al (2016) A novel small-caliber bacterial cellulose vascular prosthesis: production, characterization, and preliminary in vivo testing. Macromol Biosci 16(1):139–150

    Article  CAS  Google Scholar 

  • Levinson DJ, Glonek T (2010) Microbial cellulose contact lens. US Patent, US7832857 B2

    Google Scholar 

  • Li X, Wan W, Panchal CJ (2010) Transparent bacterial cellulose nanocomposite hydrogels. US Patent, 8940337 B2

    Google Scholar 

  • Lin WC, Lien CC, Yeh HJ, Yu CM, Hsu SH (2013a) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94(1):603–611

    Article  CAS  Google Scholar 

  • Lin SP, Calvar IL, Catchmark JM, Liu JR, Demirci A, Cheng KC (2013b) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20(5):2191–2219

    Article  CAS  Google Scholar 

  • Loh QL, Choong C (2013) Three-dimensional scaffolds for tissue engineering applications: role of porosity and pore size. Tissue Eng Part B Rev 19(6):485–502

    Article  CAS  Google Scholar 

  • Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196

    Article  CAS  Google Scholar 

  • Luo H, Zhang J, Xiong G, Wan Y (2014) Evolution of morphology of bacterial cellulose scaffolds during early culture. Carbohydr Polym 111:722–728

    Article  CAS  Google Scholar 

  • Lopes JL, Machado JM, Castanheira L, Granja PL, Gama FM, Dourado F et al (2011) Friction and wear behaviour of bacterial cellulose against articular cartilage. Wear 271:2328–2333

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72(1):43–51

    Article  CAS  Google Scholar 

  • Matuda FS, Macedo lGS, Valera MC, Carvalho R, Monteiro ASF et al (2004) Evaluation of two membranes in guided bone tissue regeneration: histological study in rabbits. Braz J Oral Sci 3(8):395–400

    Google Scholar 

  • Mello LR, Feltrin LT, Neto PTF, Ferraz FAP (1997) Duraplasty with biosynthetic cellulose: an experimental study. J Neurosurg 86:143–150

    Article  CAS  Google Scholar 

  • Messaddeq Y, Ribeiro SJL, Thomazini W (2008) Trigger, Pesquisa & Desenvolvimentos Biotecnologicos Ltda. (TRIG-Non-standard), assignee. Contact lens for therapy, method and apparatus for their production and use. Brazil patent BR, PI0603704-6

    Google Scholar 

  • Naidoo KS, Jaggernath J (2012) Uncorrected refractive errors. Indian J Ophthalmol 60(5):432–437

    Article  Google Scholar 

  • Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128

    Article  CAS  Google Scholar 

  • Novaes Jr AB, Novaes AB (1992) IMZ implants placed into extraction sockets in association with membrane therapy (Gengiflex) and porous hydroxyapatite: a case report. Int J Oral Maxillofac Implant 7(4)

    Google Scholar 

  • Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Article  CAS  Google Scholar 

  • Pértile R, Moreira S, Andrade F, Domingues L, Gama M (2012) Bacterial cellulose modified using recombinant proteins to improve neuronal and mesenchymal cell adhesion. Biotechnol Prog 28:526–532

    Article  CAS  Google Scholar 

  • Petersen N, Gatenholm P (2011) Bacterial cellulose-based materials and medical devices: current state and perspectives. Appl Microbiol Biotechnol 91(5):1277

    Article  CAS  Google Scholar 

  • Pigossi SC, de Oliveira GJPL, Finoti LS, Nepomuceno R, Spolidorio LC, Rossa C Jr et al (2015) Bacterial cellulose-hydroxyapatite composites with osteogenic growth peptide (OGP) or pentapeptide OGP on bone regeneration in critical-size calvarial defect model. J Biomed Mater Res, Part A 103:3397–3406

    Article  CAS  Google Scholar 

  • Ramani D, Sastry TP (2014) Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: a potential osteoinductive composite. Cellulose 21(5):3585–3595

    Article  CAS  Google Scholar 

  • Ravi S, Chaikof EL (2010) Biomaterials for vascular tissue engineering. Regenerative Med 5(1):107–120

    Article  CAS  Google Scholar 

  • Putra A, Kakugo A, Furukawa H, Gong JP, Osada Y (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49(7):1885–1891

    Article  CAS  Google Scholar 

  • Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    Article  CAS  Google Scholar 

  • Saha SP, Muluk S, Schenk W III, Burks SG, Grigorian A, Ploder B, Hantak E et al (2011) Use of fibrin sealant as a hemostatic agent in expanded polytetrafluoroethylene graft placement surgery. Ann Vasc Surg 25(6):813–822

    Article  Google Scholar 

  • Sakairi N, Suzuki S, Ueno K, Han SM, Nishi N, Tokura S (1998) Biosynthesis of hetero-polysaccharides by Acetobacter xylinum-Synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose. Carbohydr Polym 37(4):409–414

    Article  CAS  Google Scholar 

  • Salata LA, Craig GT, Brook IM (1998) Bone healing following the use of hydroxyapatite or ionomeric bone substitutes alone or combined with a guided bone regeneration technique: an animal study. Int J Oral Maxillofac Implant 13(1)

    Google Scholar 

  • Sarkar S, Salacinski HJ, Hamilton G, Seifalian AM (2006) The mechanical properties of infrainguinal vascular bypass grafts: their role in influencing patency. Eur J Vasc Endovasc Surg 31(6):627–636

    Article  CAS  Google Scholar 

  • Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater

    Google Scholar 

  • Saska S, Scarel-Caminaga RM, Teixeira LN, Franchi LP, Dos Santos RA, Gaspar AMM, Ribeiro SJL et al (2012) Characterization and in vitro evaluation of bacterial cellulose membranes functionalized with osteogenic growth peptide for bone tissue engineering. J Mater Sci Mater Med 23(9):2253–2266

    Article  CAS  Google Scholar 

  • Scherner M, Reutter S, Klemm D, Sterner-Kock A, Guschlbauer M, Richter T, Wippermann J et al (2014) In vivo application of tissue-engineered blood vessels of bacterial cellulose as small arterial substitutes: proof of concept? J Surg Res 189(2):340–347

    Google Scholar 

  • Schluesener JK, Schluesener HJ (2013) Nanosilver: application and novel aspects of toxicology. Arch Toxicol 87(4):569–576

    Article  CAS  Google Scholar 

  • Schultz GS, Mast BA (1998) Molecular analysis of the environment of healing and chronic wounds: cytokines, proteases and growth factors. Wounds 10(SupplF):1F–9F

    Google Scholar 

  • Schumann DA, Wippermann J, Klemm DO, Kramer F, Koth D, Kosmehl H et al (2009) Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16:877–885

    Article  CAS  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Wu J, Zhang R, Huang M et al (2015) Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr Polym 132:351–358

    Article  CAS  Google Scholar 

  • Sheykhnazari S, Tabarsa T, Ashori A, Shakeri A, Golalipour M (2011) Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydr Polym 86(3):1187–1191. https://doi.org/10.01016/j.carbpol.2011.06.011

    Article  CAS  Google Scholar 

  • Shi S, Chen S, Zhang X, Shen W, Li X, Hu W, Wang H (2009) Biomimetic mineralization synthesis of calcium-deficient carbonate-containing hydroxyapatite in a three-dimensional network of bacterial cellulose. J Chem Technol Biotechnol Int Res Process Environ Clean Technol 84(2):285–290

    CAS  Google Scholar 

  • Shi Q, Li Y, Sun J, Zhang H, Chen L, Chen B, Wang Z et al (2012) The osteogenesis of bacterial cellulose scaffold loaded with bone morphogenetic protein-2. Biomaterials 33(28):6644–6649

    Article  CAS  Google Scholar 

  • Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocoll 35:539–545

    Article  CAS  Google Scholar 

  • Stoica-Guzun A, Stroescu M, Jinga S, Jipa I, Dobre T, Dobre L (2012) Ultrasound influence upon calcium carbonate precipitation on bacterial cellulose membranes. Ultrason Sonochem 19(4):909–915

    Article  CAS  Google Scholar 

  • Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26(4):419–431

    Article  CAS  Google Scholar 

  • Tammelin T, Saarinen T, Österberg M, Laine J (2006) Preparation of Langmuir/Blodgett-cellulose surfaces by using horizontal dipping procedure. Application for polyelectrolyte adsorption studies performed with QCM-D. Cellulose 13(5):519

    Google Scholar 

  • Taneja S, Kumari M, Parkash H (2010) Nonsurgical healing of large periradicular lesions using a triple antibiotic paste: a case series. Contemp Clin Dent 1(1):31–35

    Article  Google Scholar 

  • Tang J, Bao L, Li X, Chen L, Hong FF (2015) Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J Mater Chem B 3(43):8537–8547

    Article  CAS  Google Scholar 

  • Tang J, Li X, Bao L, Chen L, Hong FF (2017) Comparison of two types of bioreactors for synthesis of bacterial nanocellulose tubes as potential medical prostheses including artificial blood vessels. J Chem Technol Biotechnol 92(6):1218–1228

    Article  CAS  Google Scholar 

  • Tarr HLA, Hibbery H (1931) Can J Res 4:372

    Article  Google Scholar 

  • Tazi N, Zhang Z, Messaddeq Y, Almeida-Lopes L, Zanardi LM, Levinson D, Rouabhia M (2012) Hydroxyapatite bioactivated bacterial cellulose promotes osteoblast growth and the formation of bone nodules. Amb Express 2(1):61

    Article  CAS  Google Scholar 

  • Theron JP, Knoetze JH, Sanderson RD, Hunter R, Mequanint K, Franz T, Bezuidenhout D et al (2010) Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater 6(7):2434–2447

    Article  CAS  Google Scholar 

  • Tienen TG, Verdonschot N, Heijkants RGJC, Buma P, Scholten JGF, Van Kampen A et al (2004) Prosthetic replacement of the medial meniscus in cadaveric knees does the prosthesis mimic the functional behavior of the native meniscus? Am J Sports Med 32(5):1182–1188

    Article  CAS  Google Scholar 

  • Tiwari A, Cheng KS, Salacinski H, Hamilton G, Seifalian AM (2003) Improving the patency of vascular bypass grafts: the role of suture materials and surgical techniques on reducing anastomotic compliance mismatch. Eur J Vasc Endovasc Surg 25(4):287–295

    Article  CAS  Google Scholar 

  • Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S (1996) Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotechnol Biochem 60:1377–1379

    Article  CAS  Google Scholar 

  • Trengove NJ, Stacey MC, Macauley S, Bennett N, Gibson J, Burslem F, Murphy G, Schultz G (1999) Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Rep Reg 7:442–452

    Article  CAS  Google Scholar 

  • Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M et al (1999) Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20(15):1407–1414

    Article  CAS  Google Scholar 

  • Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28(8):1736

    Article  CAS  Google Scholar 

  • Ul-Islam M, Khan S, Ullah MW, Park JK (2015) Bacterial cellulose composites: synthetic strategies and multiple applications in bio-medical and electro-conductive fields. Biotechnol J 10(12):1847–1861

    Article  CAS  Google Scholar 

  • Ullah H, Wahid F, Santos HA, Khan T (2016) Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr Polym 150:330–352

    Article  CAS  Google Scholar 

  • Uzun M, Anand S, Shah T (2013) Study of the pH and physical performance characteristics of silver treated absorbent wound dressings. J Ind Text 42(3):231–243

    Article  CAS  Google Scholar 

  • Vanella L, Kim DH, Asprinio D, Peterson SJ, Barbagallo I, Vanella A, Abraham NG et al (2010) HO-1 expression increases mesenchymal stem cell-derived osteoblasts but decreases adipocyte lineage. Bone 46(1):236–243

    Article  CAS  Google Scholar 

  • Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, Gao C et al (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864

    Article  CAS  Google Scholar 

  • Wang S, Gupta AS, Sagnella S, Barendt PM, Kottke-Marchant K, Marchant RE (2009) Biomimetic fluorocarbon surfactant polymers reduce platelet adhesion on PTFE/ePTFE surfaces. J Biomater Sci Polym Edn 20(5–6):619–635

    Article  CAS  Google Scholar 

  • Wang W, Li HY, Zhang DW, Jiang J, Cui YR, Qiu S, Zhang XX et al (2010) Fabrication of bienzymatic glucose biosensor based on novel gold nanoparticles-bacteria cellulose nanofibers nanocomposite. Electroanalysis 22(21):2543–2550

    Article  CAS  Google Scholar 

  • Wang J, Wan Y, Han J, Lei X, Yan T, Gao C (2011) Nanocomposite prepared by immobilising gelatin and hydroxyapatite on bacterial cellulose nanofibres. Micro Nano Lett 6(3):133–136

    Article  CAS  Google Scholar 

  • Wang H-Y, Wei R-H, Zhao SZ (2013) Evaluation of corneal cell growth on tissue engineering materials as artificial cornea scaffolds. Int J Ophthalmol 6(6):873–878

    CAS  Google Scholar 

  • WHO. Cardiovascular diseases (CVDs). http://www.who.int/cardiovascular_diseases/en/

  • Whitcher JP, Srinivasan M, Upadhyay MP (2001) Corneal blindness: a global perspective. Bull World Health Organ 79(3):214–221

    CAS  Google Scholar 

  • Wiegand C, Elsner P, Hipler U-C, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type Iin vitro. Cellulose 13(6):689–696

    Article  CAS  Google Scholar 

  • Xu C, Ma X, Chen S, Tao M, Yuan L, Jing Y (2014) Bacterial cellulose membranes used as artificial substitutes for dural defection in rabbits. Int J Mol Sci 15(6):10855–10867

    Article  CAS  Google Scholar 

  • Yang G, Xie J, Hong F, Cao Z, Yang X (2012) Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membrane: effect of fermentation carbon sources of bacterial cellulose. Carbohydr Polym 87(1):839–845

    Article  CAS  Google Scholar 

  • Yashiro B, Shoda M, Tomizawa Y, Manaka T, Hagiwara N (2012) Long-term results of a cardiovascular implantable electronic device wrapped with an expanded polytetrafluoroethylene sheet. J Artif Organs 15(3):244–249

    Article  CAS  Google Scholar 

  • Yoshino A, Tabuchi M, Uo M, Tatsumi H, Hideshima K, Kondo S et al (2013) Applicability of bacterial cellulose as an alternative to paper points in endodontic treatment. Acta Biomater 9:6116–6122

    Article  CAS  Google Scholar 

  • Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146

    Article  CAS  Google Scholar 

  • Yu HC, Chen LJ, Cheng KC, Li YX, Yeh CH, Cheng JT (2012) Silymarin inhibits cervical cancer cell through an increase of phosphatase and tensin homolog. Phytother Res 26(5):709–715

    Article  CAS  Google Scholar 

  • Zaborowska M, Bodin A, Bäckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6(7):2540–2547

    Article  CAS  Google Scholar 

  • Zang S, Zhang R, Chen H, Lu Y, Zhou J, Chang X et al (2015) Investigation on artificial blood vessels prepared from bacterial cellulose. Mater Sci Eng, C 46:111–117

    Article  CAS  Google Scholar 

  • Zhijiang C, Guang Y (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 120(5):2938–2944

    Article  CAS  Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng, C 31(1):43–49

    Article  CAS  Google Scholar 

  • Zhu W, Li W, He Y, Duan T (2015) In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci 338:22–26

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammet Uzun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Unal, S., Gunduz, O., Uzun, M. (2020). Tissue Engineering Applications of Bacterial Cellulose Based Nanofibers. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_13

Download citation

Publish with us

Policies and ethics