Skip to main content

Introduction to Green Nanomaterials

  • Chapter
  • First Online:
Green Nanomaterials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 126))

Abstract

This chapter presents an introduction to nanomaterials, which can be synthesized by green chemistry, or nano-sized functionally advanced materials which have high-performance applications in energy generation and storage, carbon dioxide fixation, electronic devices and are sustainable in terms of production and application with respect to the environment. Methods in brief of preparation of nanoparticles and nanofibres, advantages of green synthesis, and limitations of nanomaterials are discussed. This chapter also provides information related to recent research work on green nanomaterials and the available methods for their synthesis. It also gives a comprehensive overview of the recent status and suggests future directions for employing green nanomaterials for possible various application mainly in the biotechnology, agriculture and biomedical areas. The sustainability of major natural resources utilized in green nanomaterials’ synthesis is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed EM (2015) Hydrogel: Preparation, characterization, and applications: a review. J Adv Res 6(2):105–121 (Elsevier)

    Article  CAS  Google Scholar 

  • Ahmed S et al (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28 (Elsevier)

    Article  CAS  Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11(20):3805–3821 (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  • Anandalakshmi K, Venugobal J (2017) Green synthesis and characterization of silver nanoparticles using Vitex negundo (Karu Nochchi) leaf extract and its antibacterial activity. Med Chem 7:218–225

    CAS  Google Scholar 

  • Banerjee P et al (2014) Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresour Bioprocess 1(1):3 (Springer)

    Article  Google Scholar 

  • Birla SS et al (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48(2):173–179 (Wiley Online Library)

    Article  CAS  Google Scholar 

  • Chakravarty A et al (2017) Green synthesis of electrospun porous carbon nanofibers from sucrose and doping of Ag nanoparticle with improved electrical and electrochemical properties. ChemistrySelect 2(7):2265–2276 (Wiley Online Library)

    Article  CAS  Google Scholar 

  • Chandrika UG et al (2006) Hypoglycaemic action of the flavonoid fraction of. Afr J Tradit Complement Altern Med 3(2):42–50

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L, Watkins DR (2010) Nanotechnologies in food. Royal Society of Chemistry London

    Google Scholar 

  • Colson P, Henrist C, Cloots R (2013) Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials. J Nanomater 2013:21 (Hindawi Publishing Corp)

    Article  CAS  Google Scholar 

  • Crane JH, Balerdi C, Maguire I (2005) Jackfruit growing in the Florida home landscape. Fact Sheet HS-882, pp 1–10

    Google Scholar 

  • Das BR (2010) UV radiation protective clothing. Open Text J 3:14–21 (Bentham Science Publishers B. V., P. O. Box 1673 Hilversum 1200 BR The Netherlands)

    Google Scholar 

  • Dubas ST, Kumlangdudsana P, Potiyaraj P (2006) Layer-by-layer deposition of antimicrobial silver nanoparticles on textile fibers. Colloids Surf A Physicochem Eng Aspects 289(1–3):105–109 (Elsevier)

    Article  CAS  Google Scholar 

  • El-Newehy MH et al (2018) Green electrospining of hydroxypropyl cellulose nanofibres for drug delivery applications. J Nanosci Nanotechnol 18(2):805–814 (American Scientific Publishers)

    Article  CAS  Google Scholar 

  • El-Nour KMMA et al (2010) Synthesis and applications of silver nanoparticles. Arab J Chem 3(3):135–140 (Elsevier)

    Article  CAS  Google Scholar 

  • Fouda MMG (2012) Antibacterial modification of textiles using nanotechnology. In: A search for antibacterial agents. InTech

    Google Scholar 

  • Ghorbani HR (2014) A review of methods for synthesis of Al nanoparticles. Orient J Chem 30(4):1941–1949

    Article  CAS  Google Scholar 

  • Hamers RJ (2017) Nanomaterials and global sustainability. Acc Chem Res 50(3):633–637 (ACS Publications)

    Article  CAS  Google Scholar 

  • Hasan S (2015) A review on nanoparticles: their synthesis and types. Res J Recent Sci. ISSN 2277, p 2502

    Google Scholar 

  • Hassan MM, Wagner MH (2017) Surface modification of natural fibers for reinforced polymer composites. In: Progress in adhesion and adhesives. John Wiley & Sons Inc, pp 1–44

    Google Scholar 

  • Johnston JH et al (2008) Gold nanoparticles as colourants in high fashion fabrics and textiles 1:712–715

    Google Scholar 

  • Joshi M et al (2009) Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products. CSIR

    Google Scholar 

  • Kathirvelu S, D’souza L, Dhurai B (2009) UV protection finishing of textiles using ZnO nanoparticles. CSIR

    Google Scholar 

  • Khalil MMH et al (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139 (Elsevier)

    Article  CAS  Google Scholar 

  • Khan A et al (2016) A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Letters 6(1):21–26 (Springer)

    Article  CAS  Google Scholar 

  • Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31(7):1105–1109 (Springer)

    Article  CAS  Google Scholar 

  • Kiumarsi A et al (2017) ‘Extraction of dyes from Delphinium Zalil flowers and dyeing silk yarns. J Text Inst 108(1):66–70 (Taylor & Francis)

    Article  CAS  Google Scholar 

  • Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc oxide—from synthesis to application: a review. Materials 7(4):2833–2881 (Multidisciplinary Digital Publishing Institute)

    Article  CAS  Google Scholar 

  • Makarov VV et al (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия). Oбщecтвo c oгpaничeннoй oтвeтcтвeннocтью Пapк-мeдиa 6(1(20))

    Google Scholar 

  • Malik P et al (2014) Green chemistry based benign routes for nanoparticle synthesis. J Nanopart (Hindawi)

    Google Scholar 

  • Manaia EB et al (2013) Inorganic UV filters. Braz J Pharm Sci 49(2):201–209 (SciELO Brasil)

    Article  CAS  Google Scholar 

  • Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31(2):346–356 (Elsevier)

    Article  CAS  Google Scholar 

  • Murphy M et al (2015) Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J Nanomater 2015:5 (Hindawi Publishing Corp)

    Article  CAS  Google Scholar 

  • Naahidi S et al (2013) Biocompatibility of engineered nanoparticles for drug delivery. J Controlled Release 166(2):182–194 (Elsevier)

    Article  CAS  Google Scholar 

  • Pal SL et al (2011) Nanoparticle: an overview of preparation and characterization. J Appl Pharm Sci 1(6):228–234

    Google Scholar 

  • Pandey R et al (2017) Colouration of textiles using roasted peanut skin-an agro processing residue. J Cleaner Prod (Elsevier)

    Google Scholar 

  • Pandit P et al (2018a) Applications of textile materials using emerging sources and technology: a new perspective. Green Sustain Adv Mater Appl 2:49–83 (John Wiley & Sons, Inc. Hoboken, NJ, USA)

    Article  Google Scholar 

  • Pandit P, Gayatri TN, Maiti S (2018b) Green and sustainable textile materials using natural resources. Green Sustain Adv Mater Process Charact 1:213–261 (John Wiley & Sons, Inc. Hoboken, NJ, USA)

    Article  Google Scholar 

  • Pandit P, Nadathu GT (2018) Characterization of green and sustainable advanced materials. Green Sustain Adv Mater Process Charact 1:35–66 (John Wiley & Sons, Inc. Hoboken, NJ, USA)

    Article  Google Scholar 

  • Pavani KV, Balakrishna K, Cheemarla NK (2011) Biosynthesis of zinc nanoparticles by Aspergillus species. Int J Nanotechnol Appl 5(1):27–36

    Google Scholar 

  • Pervez MN, Stylios GK (2018) An experimental approach to the synthesis and optimisation of a “Green” Nanofibre. Nanomaterials 8(6) (Multidisciplinary Digital Publishing Institute (MDPI))

    Google Scholar 

  • Prabhu YT et al (2017) A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21(2):180–185 (Elsevier)

    Article  CAS  Google Scholar 

  • Prasek J et al (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21(40):15872–15884 (Royal Society of Chemistry)

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83 (Elsevier)

    Article  CAS  Google Scholar 

  • Rauwel P et al (2015) Silver nanoparticles: synthesis, properties, and applications. In: Advances in materials science and engineering. Hindawi

    Google Scholar 

  • Rivero PJ et al (2015) Nanomaterials for functional textiles and fibers. Nanoscale Res Lett 10(1):501 (Springer)

    Article  CAS  Google Scholar 

  • Sangeetha G, Rajeshwari S, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46(12):2560–2566 (Elsevier)

    Article  CAS  Google Scholar 

  • Saravanan D (2007) UV protection textile materials. AUTEX Res J 7(1):53–62

    Google Scholar 

  • Singh M et al (2012) Natural minerals and cancer. J Appl Pharm Sci 2(04):158–165

    Article  CAS  Google Scholar 

  • Srikulkit K, Iamsamai C, Dubas ST (2017) Development of flame retardant polyphosphoric acid coating based on the polyelectrolyte multilayers technique. J Metals Mater Miner 16(2)

    Google Scholar 

  • Subhankari I, Nayak PL (2013) Synthesis of copper nanoparticles using Syzygium aromaticum (Cloves) aqueous extract by using green chemistry. World J Nano Sci Technol 2(1):14–17

    Google Scholar 

  • Suresh S (2013) Semiconductor nanomaterials, methods and applications: a review. Nanosci Nanotechnol 3(3):62–74 (Scientific & Academic Publishing)

    Google Scholar 

  • Tang B et al (2011) Using hydroxy carboxylate to synthesize gold nanoparticles in heating and photochemical reactions and their application in textile colouration. Chem Eng J 172(1):601–607 (Elsevier)

    Article  CAS  Google Scholar 

  • Tang B et al (2012) Coloration of cotton fibers with anisotropic silver nanoparticles. Ind Eng Chem Res 51(39):12807–12813 (ACS Publications)

    Article  CAS  Google Scholar 

  • Tang B et al (2015) Functional application of noble metal nanoparticles in situ synthesized on ramie fibers. Nanoscale Res Lett 10(1):366 (Springer)

    Article  CAS  Google Scholar 

  • Teli MD et al (2015) Hydrophobic silk fabric using atmospheric pressure plasma. Int J Bioresour Sci 2(1):15 (Renu Publishers)

    Google Scholar 

  • Teli MD et al (2015) Low-temperature dyeing of silk fabric using atmospheric pressure helium/nitrogen plasma. Fibers Polym 16(11): 2375–2383 https://doi.org/10.1007/s12221-015-5166-4.

  • Teli MD, Pandit P (2017a) A novel natural source Sterculia foetida fruit shell waste as colorant and ultraviolet protection for linen. J Nat Fibers, 15(3): 337—343 (Taylor & Francis)

    Google Scholar 

  • Teli MD, Pandit P (2017b) Development of thermally stable and hygienic colored cotton fabric made by treatment with natural coconut shell extract. J Ind Text 48(1):87–118. (SAGE Publications Sage UK: London, England, p. 1528083717725113)

    Google Scholar 

  • Teli MD, Pandit P (2017c) Multifunctionalised silk using Delonix regia stem shell waste. Fibers Polym 18(9):1679–1690 (Springer)

    Article  CAS  Google Scholar 

  • Teli MD, Pandit P (2017d) Multifunctionalised silk using Delonix regia stem shell waste. Fibers Polym 18(9):1679–1690. https://doi.org/10.1007/s12221-017-1228-0

  • Teli MD, Pandit P (2017e) Novel method of ecofriendly single bath dyeing and functional finishing of wool protein with coconut shell extract biomolecules. ACS Sustain Chem Eng 5(9):8323–8333 (ACS Publications)

    Google Scholar 

  • Teli MD, Pandit P (2018) Application of Sterculia foetida fruit shell waste biomolecules on silk for aesthetic and wellness properties. Fibers Polym 19(1):41–54. https://doi.org/10.1007/s12221-018-7315-4

  • Teli MD, Pandit P, Basak S (2018) Coconut shell extract imparting multifunction properties to ligno-cellulosic material, J Ind Text 47(6):1261–1290. https://doi.org/10.1177/1528083716686937

  • Tolle R et al (2007) ‘Lloyd’s of London report on nanotechnology: recent development, risks and opportunities. London, England, United Kingdom, Lloyd’s of London Emerging Risk Team

    Google Scholar 

  • Xia Y et al (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389 (Wiley Online Library)

    Article  CAS  Google Scholar 

  • Ye W et al (2006) Durable antibacterial finish on cotton fabric by using chitosan-based polymeric core-shell particles. J Appl Polym Sci 102(2):1787–1793 (Wiley Online Library)

    Article  CAS  Google Scholar 

  • Zhang Z, Decker EA, McClements DJ (2014) Encapsulation, protection, and release of polyunsaturated lipids using biopolymer-based hydrogel particles. Food Res Int 64:520–526 (Elsevier)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pintu Pandit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandit, P., Gayatri, T. (2020). Introduction to Green Nanomaterials. In: Ahmed, S., Ali, W. (eds) Green Nanomaterials. Advanced Structured Materials, vol 126. Springer, Singapore. https://doi.org/10.1007/978-981-15-3560-4_1

Download citation

Publish with us

Policies and ethics