Skip to main content

Role of Global Climate Change in Crop Yield Reductions

  • Chapter
  • First Online:

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 20))

Abstract

Uncontrolled emission of greenhouse gases (GHGs) leads to global warming and climate change. It is progressively changing at an alarming rate in the coming future. Increasing global warming is responsible for the difference in temperature, frequency of precipitation, drought events, and heat waves. By the end of the twenty-first century, the CO2 crosses the concentration more than 600–1000 ppm, and it increases the temperature by 1–2 °C in tropical and subtropical countries. It is anticipated that food grain production would decline up to 30% depending on the plant group (C3 and C4 plant). This chapter deals with how C3 and C4 crop plant responds to elevated CO2 and higher temperature. Increasing concentration of atmospheric CO2 and higher temperature will promote or decrease crop growth period, development, quality, and yield. The various physiological processes like photosynthesis, respiration, and stomatal conductance are the sole mechanisms for endorsing crop growth. C3 crops grown from ambient (360 ppm) to high (720 ppm) CO2 concentrations initially enhances the net CO2 fixation and growth by nearly 30% but later on it reduced in photorespiration processes. Hence, CO2 acclimation lowers down the overall shoot nitrogen concentrations. Later on, this led to a reduction in protein content and ultimately affected the plant growth rate and biomass, whereas even under the ambient CO2, the C4 plant assimilation capability becomes saturated. The higher temperature will be responsible for heat shock injury as well as biochemical and physiological changes. Subsequently, it reduced grain production and yield depending on the geographical place. The higher temperature influences and maintains the equilibrium between C3 photosynthetic carbon assimilation and photorespiration process. It is predicted that after the interaction of atmospheric CO2 and temperature under experimental conditions, C3 plants more favored under elevated CO2 whereas, C4 plant more favored under higher temperature. There is a need for mitigation and adaptation strategies to improve agricultural crop production and minimizes the production risk for sustainable development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdelmageed AHA, Gruda N (2009) Influence of high temperatures on gas exchange rate and growth of eight tomato cultivars under controlled heat stress conditions. Eur J Hortic Sci 74:152–159

    CAS  Google Scholar 

  • Abebe A, Pathak H, Singh SD, Bhatia A, Harit RC, Kumar V (2016) Growth, yield and quality of maize with elevated atmospheric carbon dioxide and temperature in north–west India. Agric Ecosyst Environ 218:66–72

    Article  CAS  Google Scholar 

  • Adams RM et al (1990) Global climate change and U.S. agriculture. Nature 345:219–224

    Article  Google Scholar 

  • Adger NW, Huq S, Brown K, Conway D, Hulme M (2003) Prog Dev Stud 3:179–195

    Article  Google Scholar 

  • Ainsworth EA, Rogers A, Leakey ADB, Heady LE, Gibon Y, Stitt M, Schurr U (2007) Does elevated atmospheric [CO2] alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? J Exp Bot 58(3):579–591

    Article  CAS  PubMed  Google Scholar 

  • Al-Ghussain L (2018) Global warming: review on driving forces and mitigation. Environ Prog Sustain Energy. doi:10.1002/ep

    Google Scholar 

  • Allen LH (1979) Potentials for carbon dioxide enrichment. In: Barfield BJ, Gerber JF (eds) Modification of aerial environment of plants. American Society of Agricultural Engineering Monography, Fort Collins, vol 2, pp 500–519

    Google Scholar 

  • Backhausen JE, Kitzmann C, Sheibe R (1994) Photosynth Res 42:75–86

    Article  CAS  PubMed  Google Scholar 

  • Backhausen JE, Kitzmann C, Horton P, Scheibe R (2000) Electron acceptors in isolated intact spinach chloroplasts act hierarchically to prevent over-reduction and competition for electrons. Photosynth Res 64:1–13

    Article  CAS  PubMed  Google Scholar 

  • Bagley J, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Kumar P, Ort DR et al (2015) The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Glob Biogeochem Cycles 29:194–206. https://doi.org/10.1002/2014GB004848

    Article  CAS  Google Scholar 

  • Baker JT et al (1989) Response of soybean to air temperature and carbon dioxide concentration. Crop Sci 29:98–105

    Article  Google Scholar 

  • Becker C, Klaring HP (2016) CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem 199:736–745

    Article  CAS  PubMed  Google Scholar 

  • Ben-Asher J, Garcia AG, Hoogenboom G (2008) Effect of high temperature on photosynthesis and transpiration of sweet corn (Zea mays L. var. rugosa). Photosynthetica 46(4):595–603

    Article  Google Scholar 

  • Berry JA, Downton JS (1982) Environmental regulation of photosynthesis. In: Govindjee (ed) Photosynthesis: development, carbon metabolism and plant productivity, vol II. Academic Press, New York, pp 263–343

    Google Scholar 

  • Bettoni MM, Mogor AF, Pauletti V, Goicoechea N (2014) Growth and metabolism of onion seedlings as affected by the application of humic substances, mycorrhizal inoculation and elevated CO2. Sci Hortic 180:227–235

    Article  CAS  Google Scholar 

  • Bisbis MB, Gruda N, Blanke M (2018) Potential impacts of climate change on vegetable production and product quality: a review. J Clean Prod 170:1602–1620

    Article  CAS  Google Scholar 

  • Blanke MM, Hucklesby DP, Notton BA, Lenz F (1987) Utilization of bicarbonate by apple fruit phosphoenolpyruvate carboxylase. Phytochemistry 26(9):2475–2476

    Article  CAS  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Natl Acad Sci U S A 99:1730–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloom AJ, Burger M, Asensio JSR, Cousins AB (2010) Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis. Science 328:899–903

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJ, Rubio-Asensio JS, Randall L, Rachmilevitch S, Cousins AB, Carlisle EA (2012) CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants. Ecology 93:355–367

    Article  PubMed  Google Scholar 

  • Bloom AJ, Burger M, Kimball BA, Pinter PJ Jr (2014) Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nat Clim Chang 4:477. https://doi.org/10.1038/nclimate2183

    Article  CAS  Google Scholar 

  • Bouma TJ, Nielson KL, Eissenstat DM, Lynch JP (1997) Estimating respiration of roots in soil: interactions with soil CO2, soil temperature, and soil water content. Plant Soil 195:221–232

    Article  CAS  Google Scholar 

  • Bowes G (1993) Annu Rev Plant Physiol Plant Mol Biol 44:309–332

    Article  CAS  Google Scholar 

  • Bunce JA (2017) Variation in yield responses to elevated CO2 and a brief high temperature treatment in Quinoa. Plants (Basel) 6(3):26. https://doi.org/10.3390/plants6030026

    Article  CAS  Google Scholar 

  • Burkey K, Booker F, Ainsworth E, Nelson R (2012) Field assessment of a snap bean ozone bioindicator system under elevated ozone and carbon dioxide in a free air system. Environ pollut (Barking, Essex : 1987) 166:167–171. https://doi.org/10.1016/j.envpol.2012.03.020

    Article  CAS  Google Scholar 

  • Burton AJ, Zogg GP, Pregitzer KS, Zak DR (1997) Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol 17:421–427

    Article  CAS  PubMed  Google Scholar 

  • Butterly CR, Armstrong R, Chen D, Tang C (2016) Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Ann Bot 117:177–185. https://doi.org/10.1093/aob/mcv140

    Article  CAS  PubMed  Google Scholar 

  • Cai C, Yin X, He S, Jiang W, Si C, Struik PC, Luo W, Li G, Xie Y, Xiong Y, Pan G (2015) Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Glob Chang Biol 22(2):856–874. https://doi.org/10.1111/gcb.13065

    Article  PubMed  Google Scholar 

  • Cavagnaro RT, Gleadow R, Rebecca M (2011) Plant nutrient acquisition and utilisation in a high carbon dioxide world. Funct Plant Biol 38:87–96. https://doi.org/10.1071/fp10124

    Article  CAS  PubMed  Google Scholar 

  • CDIAC. http://cdiac.ornl.gov/trends/emis/overview_2014.html

    Google Scholar 

  • Choi EY, Seo TC, Lee SG, Cho IH, Stangoulis J (2011) Growth and physiological responses of Chinese cabbage and radish to long-term exposure to elevated carbon dioxide and temperature. Hortic Environ Biotechnol 52(4):376–386

    Article  CAS  Google Scholar 

  • Clifford SC et al (1993) The effects of elevated atmospheric carbon dioxide and water stress on light interception, dry matter production and yield in stands of groundnut (Arachis hypogaea L.). J Exp Bot 44:1763–1770

    Article  Google Scholar 

  • Clinton BD, Vose JM (1999) Fine root respiration in mature eastern white pine (Pinus strobus) in situ: the importance of CO2 in controlled environments. Tree Physiol 19:475–479

    Article  PubMed  Google Scholar 

  • Cure JD, Acock B (1986) Crop response to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • Curtis PS (1996) Plant Cell Environ 19:127–137

    Article  Google Scholar 

  • Daymond AJ, Wheeler TR, Hadley P, Ellis RH, Morison JIL (1997) The growth, development and yield of onion (Allium cepa L.) in response to temperature and CO2. J Hortic Sci (UK)

    Google Scholar 

  • Edwards G, Walker D (1983) C3 C4: mechanisms, and cellular and environmental regulations of photosynthesis. Blackwell, Oxford

    Google Scholar 

  • Ehleringer JR, Cerling TE (2001) Photosynthetic pathways and climate. In: Schulze E-D, Heimann M, Harrison SP, Holland EA, Lloyd J, Prentice IC, Schimel D (eds) Global biogeochemical cycles in the climate system. Academic Press, San Diego, pp 267–277

    Chapter  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112:285–299

    Article  PubMed  Google Scholar 

  • El Maayar M et al (1997) The effects of climate change and CO2 fertilization on agriculture in Quebec. Agric For Meteorol 85:193–208

    Article  Google Scholar 

  • Engineer CB, Hashimoto-Sugimoto M, Negi J et al (2015) CO2 sensing and CO2 regulation of stomatal conductance: advances and open questions. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2015.08.014

  • Fang SB, Shen B, Tan K, Gao XN (2010) Effect of elevated CO2 concentration and increased temperature on physiology and production of crops. Chin J Eco-Agric 18:1116–1124

    Article  Google Scholar 

  • Fuhrer J (2003) Agroecosystem response to combinations of elevated CO2, ozone, and global climate change. Agric Ecosyst Environ 97:1–20

    Article  CAS  Google Scholar 

  • Fuss S, Canadell JG, Peters GP et al (2014) Commentary: betting on negative emissions. Nat Clim Chang 4:850–853

    Article  CAS  Google Scholar 

  • Ghannoum O, Conroy JP (2007) Phosphorus deficiency inhibits growth in parallel with photosynthesis in a C-3 (Panicum laxum) but not two C-4 (P. coloratum and Cenchrus ciliaris) grasses. Funct Plant Biol 34(1):72–81

    Article  CAS  Google Scholar 

  • Giri A, Armstrong B, Rajashekar CB (2016) Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Am J Plant Sci 7(1):246

    Article  CAS  Google Scholar 

  • Gonzàlez-Meler MA, Siedow JN (1999) Direct inhibition of mitochondrial respiratory enzymes by elevated CO2: does it matter at the tissue or wholeplant level? Tree Physiol 19:253–259

    Article  PubMed  Google Scholar 

  • Gonzàlez-Meler MA, Ribas-Carbó M, Siedow JN, Drake BG (1996) Direct inhibition of plant mitochondrial respiration by elevated CO2. Plant Physiol 112:1349–1355

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106

    Article  Google Scholar 

  • Graham D (1980) Effects of light on “dark” respiration. In: Metabolism and respiration: a comprehensive treatise, pp 525–579

    Google Scholar 

  • Griffin KL, Tissue DT, Turnbull MH, Schuster W, Whitehead D (2001) Leaf dark respiration as a function of canopy position in Nothofagus fusca trees grown at ambient and elevated CO2 partial pressures for 5 years. Funct Ecol 15:497–505

    Article  Google Scholar 

  • Gruda N (2005) Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption. Crit Rev Plant Sci 24(3):227–247

    Article  CAS  Google Scholar 

  • Gruda N (2009) Do soilless culture systems have an influence on product quality of vegetables? J Appl Bot Food Qual 82:141–147

    Google Scholar 

  • Gruda N, Tanny J (2014) Protected crops. In: Dixon GR, Aldous DE (eds) Horticulture: plants for people and places, vol 1. Springer, Netherlands, pp 327–405

    Google Scholar 

  • Hamilton JG, Thomas RB, Delucia EH (2001) Direct and indirect effects of elevated CO2 on leaf respiration in a forest ecosystem. Plant Cell Environ 24:975–982

    Article  CAS  Google Scholar 

  • Hartmann DL, Klein Tank AMG, Rusticucci M et al (2013) Observations: atmosphere and surface. In: Stocker TF, Qin D, Plattner G-K et al (eds) Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 159–254

    Google Scholar 

  • Horie T, Matsui T, Nakagawa H, Omasa K (1996) Effects of elevated CO2 and global climate change on rice yield in Japan. In: Climate change and plants in East Asia. Springer, Tokyo

    Google Scholar 

  • Houghton RA, Nassikas AA (2017) Global and regional fluxes of carbon from land use and land cover change 1850–2015. Global Biogeochem Cycles 31:456–472. https://doi.org/10.1002/2016GB005546

    Article  CAS  Google Scholar 

  • Howden M, Soussana JF, Tubiello FN (2007) Adaptation strategies for climate change. Proc Natl Acad Sci 104:19691–19698

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim MA, Nissinen A, Prozherina N, Oksanen EJ, Holopainen JK (2006) The influence of exogenous monoterpene treatment and elevated temperature on growth, physiology, chemical content and headspace volatiles of two carrot cultivars (Daucus carota L.). Environ Exp Bot 56(1):95–107

    Article  CAS  Google Scholar 

  • IEA (2017) CO2 emissions from fuel combustion – highlights. Int Energy Agency 1:1–162. https://doi.org/10.1787/co2_fuel-2017-en

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: Mitigation. Contribution of working group III to the third assessment report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • IPCC (2007) Climate change—impacts, adaptation and vulnerability technical summary of working group II. Fourth Assessment Report Inter-governmental Panel on Climate Change. Cambridge University Press, Cambridge, p 976

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • IPCC (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. In: Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Chatterjee M, Ebi KL, Estrada YO, Genova RC, Girma B, Kissel ES, Levy AN, Mac Cracken S, Mastrandrea PR, White LL (eds) Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 1132 p

    Google Scholar 

  • Jahnke S (2001) Atmospheric CO2 concentration does not directly affect leaf respiration in bean or poplar. Plant Cell Environ 24:1139–1151

    Article  CAS  Google Scholar 

  • Jin C, Du S, Wang Y, Condon J, Lin X, Zhang Y (2009) Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J Plant Nutr Soil Sci 172(3):418–424

    Article  CAS  Google Scholar 

  • Johkan M, Oda M, Maruo T, Shinohara Y (2011) Crop production and global warming impacts. Case studies on the economy, human health, and on urban and natural environments. http://www.intechopen.com

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 1618(1):308–313

    Article  Google Scholar 

  • Kałuzewicz A, Krzesinski W, Knaflewski M (2009) Effect of temperature on the yield and quality of broccoli heads. Veg Crops Res Bull 71:51–58

    Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 770 prior observation. USDA/ARS Water Conservation Laboratory Report Number 14. Phoenix, AZ

    Google Scholar 

  • Kimball BA et al (1995) Productivity and water use of wheat under free-air CO2 enrichment. Glob Chang Biol 1:429–442

    Article  Google Scholar 

  • Knaff DB (1996) In: Ort DR, Yocum CF (eds) Oxygenic photosynthesis: the light reactions, vol 4. Kluwer, Dordrecht, pp 333–361

    Chapter  Google Scholar 

  • Köhler IH, Huber SC, Bernacchi CJ, Baxter IR (2019) Increased temperatures may safeguard the nutritional quality of crops under future elevated CO2 concentrations. Plant J. https://doi.org/10.1111/tpj.14166

  • Korner C (2006) Plant CO2 responses: an issue of definition, time and resource supply. New Phytol 172:393–411

    Article  CAS  PubMed  Google Scholar 

  • Korres NE, Norsworthy JK, Tehranchian P, Gitsopoulos TK, Loka DA, Derrick MO, Gealy DR, Moss SR, Burgos NR, Ryan Miller M, Palhano M (2016) Cultivars to face climate change effects on crops and weeds: a review. Agron Sustain Dev 36:12

    Article  Google Scholar 

  • Kulshrestha U, Saxena P (eds) (2016) Plant responses to air pollution. Springer, Singapore

    Google Scholar 

  • Kyei-Boahen S, Astatkie T, Lada R, Gordon R, Caldwell C (2003) Gas exchange of carrot leaves in response to elevated CO2 concentration. Photosynthetica 41(4):597–603

    Article  CAS  Google Scholar 

  • Laber H, Lattauschke G (2014) Vegetable production, 2nd edn. Eugen Ulmer Verlag, Stuttgart. (In German)

    Google Scholar 

  • Lal M et al (1998) Vulnerability of rice and wheat yields in NW India to future changes in climate. Agric For Meteorol 89:101–114

    Article  Google Scholar 

  • Lattauschke G (2015) Extreme heat caused massive yield and quality reductions in medium and late peas. In: Versuche im deutschen Gartenbau 2015. Sachsisches Landesamt für Umwelt. Landwirtschaft und Geologie, Dresden. (in German)

    Google Scholar 

  • Le QC et al (2018a) Global carbon budget. 2017. Earth Syst Sci Data 10:405–448

    Article  Google Scholar 

  • Le QC et al (2018b) Global carbon budget. 2018. Earth Syst Sci Data. https://doi.org/10.5194/essd-2018-120

  • Leakey ADB (2009) Rising atmospheric carbon dioxide concentration and the future of C-4 crops for food and fuel. Proc Roy Soc B Biol Sci 276:2333–2343

    Article  CAS  Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman WFG, Ort DR, Long SP (2004) Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmospheres? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Glob Chang Biol 10:951–962

    Article  Google Scholar 

  • Leakey AD et al (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009a) Elevated CO2 effects on plant carbon, nitrogen, and water relations, six important lessons from FACE. J Exp Bot 60:2859–2876

    Article  CAS  PubMed  Google Scholar 

  • Lemonnier P, Ainsworth EA (2019) In: Yadav SS, Redden RJ, Hatfield JL, Ebert AW, Hunter D (eds) Crop responses to rising atmospheric [CO2] and global climate change. Food security and climate change, 1st edn. Wiley

    Google Scholar 

  • Lenka NK, Lenka S, Thakur JK, Elanchezhian R, Aher SB, Simaiya V, Yashona DS, Biswas AK, Agrawal PK, Patra AK (2017) Interactive effect of elevated carbon dioxide and elevated temperature on growth and yield of soybean. Curr Sci 113:12

    Article  Google Scholar 

  • Liu S, Waqas MA, Wang S-h, X-y X, Wan Y-f (2017) Effects of increased levels of atmospheric CO2 and high temperatures on rice growth and quality. PLoS One 12(11):e0187724. https://doi.org/10.1371/journal.pone.0187724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002. 7 pp

    Article  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants face the future. Annu Rev Plant Biol 55:591–628

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Ainsworth EA, Leakey ADB, Nösberger J, Ort DR (2006) Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312:1918–1921

    Article  CAS  PubMed  Google Scholar 

  • Luthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000-800,000 years before present. Nature 453:379–382. https://doi.org/10.1038/nature06949

    Article  CAS  PubMed  Google Scholar 

  • Makino A, Mae T (1999) Photosynthesis and plant growth at elevated levels of CO2. Plant Cell Physiol 40(10):999–1006

    Article  CAS  Google Scholar 

  • Masle J (2000) The effects of elevated CO2 concentrations on cell division rates, growth patterns, and blade anatomy in young wheat plants are modulated by factors related to leaf position, vernalization, and genotype. Plant Physiol 122(4):1399–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattos L, Moretti C, Jan S, Sargent S, Lima C, Fontenelle M (2014) Chapter 19. climate changes and potential impacts on quality of fruit and vegetable crops. https://doi.org/10.1016/B978-0-12-800876-8.00019-9

  • Meinshausen M, Smith SJ, Calvin K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Mendelsohn R, Dinar A (2009) Climate change and agriculture: an economic analysis of global impacts, adaptation and distributional effects. Edward Elgar, Cheltenham, p 256

    Book  Google Scholar 

  • Meng F, Zhang J, Yao F, Hao C (2014) Interactive effects of elevated CO2 concentration and irrigation on photosynthetic parameters and yield of maize in Northeast China. PLoS One 9(5):e98318. https://doi.org/10.1371/journal.pone.0098318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menzel A, Sparks TH, Estrella N et al (2006a) European phonological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  PubMed  Google Scholar 

  • Mølmann JA, Steindal AL, Bengtsson GB, Seljåsen R, Lea P, Skaret J, Johansen TJ (2015) Effects of temperature and photoperiod on sensory quality and contents of glucosinolates, flavonols and vitamin C in broccoli florets. Food Chem 172:47–55

    Article  PubMed  CAS  Google Scholar 

  • Moore T, Roulet N, Waddington J (1998) Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Clim Chang 40(2):229–245

    Article  CAS  Google Scholar 

  • Mott KA (2009) Opinion: stomatal responses to light and CO2 depend on the mesophyll. Plant Cell Environ 32:1479–1486

    Article  CAS  PubMed  Google Scholar 

  • Myers SS et al (2014) Increasing CO2 threatens human nutrition. Nature 510:139–142. https://doi.org/10.1038/nature13179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • NOAA. http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

    Google Scholar 

  • Osborne CP (2016) Crop yields: CO2 fertilization dries up. Nat Plants 2(9):1–2

    Article  CAS  Google Scholar 

  • Owensby CE, Ham JM, Knapp AK, Auen LM (1999) Biomass production and species composition change in a tall grass prairie ecosystem after long-term exposure to elevated atmospheric CO2. Glob Chang Biol 5:497–506

    Article  Google Scholar 

  • Pal M, Rao LS, Srivastava AC, Jain V, Sengupta UK (2003) Impact of CO2 enrichment and variable nitrogen supplies on composition and partitioning of essential nutrients of wheat. Biol Plant 47(2):227–231

    Article  CAS  Google Scholar 

  • Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge. https://doi.org/10.1256/004316502320517344

    Book  Google Scholar 

  • Pathak H, Aggarwal PK, Singh SD (2012) Climate change impacts, adaptations and mitigation in agriculture: methodology for assessment and application. Indian Agricultural Research Institute, New Delhi, p xix+302

    Google Scholar 

  • Peet MM, Wolfe DW (2000) Crop ecosystem responses to climatic change: vegetable crops. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Oxon, pp 213–243

    Chapter  Google Scholar 

  • Poorter H, Navas ML (2003) New Phytol 157:175–198

    Article  Google Scholar 

  • Poorter H, Perez-Soba M (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129(1):1–20

    Article  PubMed  Google Scholar 

  • Prior SA, Torbert HA, Runion GB, Rogers HH (2003) Implications of elevated CO2-induced changes in agroecosystem productivity. J Crop Prod 8:217–244

    Article  Google Scholar 

  • Qaderi MM, Kurepin LV, Reid DM (2006) Growth and physiological responses of canola (Brassica napus) to three components of global climate change: temperature, carbon dioxide and drought. Physiol Plant 128:710–721

    Article  CAS  Google Scholar 

  • Qi J, Marshall JD, Mattson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol 128:435–442

    Article  Google Scholar 

  • Qiao Y, Shujie M, Qi L, Jian J, Xiaosan L, Caixian T (2019) Elevated CO2 and temperature increase grain oil concentration but their impacts on grain yield differ between soybean and maize grown in a temperate region. Sci Total Environ 666:405–413

    Article  CAS  PubMed  Google Scholar 

  • Quesada A, Gomez-Garcia I, Fernandez E (2000) Involvement of chloroplast and mitochondria redox valves in nitrate assimilation. Trends Plant Sci 5:463–464

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevitch S, Cousins AB, Bloom AJ (2004) Nitrate assimilation in plant shoots depends on photorespiration. PNAS 101(31):11506–11510

    Article  CAS  PubMed  Google Scholar 

  • Reich M, Meerakker AN, Parmar S, Hawkesford MJ, De Kok LJ (2015) Temperature determines size and direction of effects of elevated CO2 and nitrogen form on yield quantity and quality of Chinese cabbage. Plant Biol 18(S1):63–75

    PubMed  Google Scholar 

  • Rezaei EE, Siebert S, Hüging H, Ewert F (2018) Climate change effect on wheat phenology depends on cultivar change. Sci Rep 8(1):4891. https://doi.org/10.1038/s41598-018-23101-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers HH, Bingham GE, Cure JD, Smith JM, Surano KA (1983) Responses of selected plant species to elevated carbon dioxide in the field. J Environ Qual 2(4):569–574

    Article  Google Scholar 

  • Rosales MA, Cervilla LM, Sanchez-Rodríguez E, Rubio-Wilhelmi MDM, Blasco B, Ríos JJ, Ruiz JM (2010) The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. J Sci Food Agric 91(1):152–162

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig C, Tubiello FN (1996) Effects of changes in minimum and maximum temperature on wheat yields in the Central US: a simulation study. Agric For Meteorolo 80:215–230

    Article  Google Scholar 

  • Ruiz-Vera UM, Siebers MH, Drag DW, Ort DR, Bernacchi CJ (2015) Canopy warming caused photosynthetic acclimation and reduced seed yield in maize grown at ambient and elevated [CO2]. Glob Chang Biol 21(11):4237–4249

    Article  PubMed  Google Scholar 

  • Rumpff L, Coates F, Morgan JW (2010) Biological indicators of climate change: evidence from long-term flowering records of plants along the Victorian coast, Australia. Austral J Bot 58:428. https://doi.org/10.1071/BT10053

    Article  Google Scholar 

  • Sage RF, Sharkey TD, Seemann JR (1989) Acclimation of photosynthesis to elevated CO2 in 5 C-3 species. Plant Physiol 89(2):590–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saure MC (1998) Causes of the tipburn disorder in leaves of vegetables. Sci Hortic 76:131–147

    Article  CAS  Google Scholar 

  • Saxena P, Naik V (eds) (2018) Air pollution: sources, impacts and controls. CABI, Oxford

    Google Scholar 

  • Saxena P, Sonwani S (2019a) Primary criteria air pollutants: environmental health effects, Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 49–82

    Google Scholar 

  • Saxena P, Sonwani S (2019b) Criteria air pollutants: chemistry, sources and sinks, Criteria air pollutants and their impact on environmental health. Springer, Singapore, pp 7–48

    Google Scholar 

  • Saxena P, Sonwani S (2020) Criteria air pollutants and their impact on environmental health. Springer, Singapore

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. Proc Natl Acad Sci U S A 104:19703–19708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seneweera S (2011) Effects of elevated CO2 on plant growth and nutrient partitioning of rice (Oryza sativa L.) at rapid tillering and physiological maturity. J Plant Interact 6(1):35–42

    Article  CAS  Google Scholar 

  • Seneweera SP, Conroy JP (2005) Enhanced leaf elongation rates of wheat at elevated CO2: is it related to carbon and nitrogen dynamics within the growing leaf blade? Environ Exp Bot 54(2):174–181

    Article  CAS  Google Scholar 

  • Seneweera S, Milham P, Conroy J (1994) Influence of elevated CO2 and phosphorus-nutrition on the growth and yield of a short-duration rice (Oryza Sativa l cv Jarrah). Austral J Plant Physiol 21(3):281–292

    CAS  Google Scholar 

  • Shimono H, Bunce JA (2009) Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration. Ann Bot 103:87–94

    Article  CAS  PubMed  Google Scholar 

  • Shingles R, Roh MH, McCarty RE (1996) Plant Physiol 112:1375–1381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddique MA, Goodwin PB (1980) Seed vigour in bean (Phaseolus vulgaris L. cv. Apollo) as influenced by temperature and water regime during development and maturation. J Exp Bot 31(1):313–323

    Article  Google Scholar 

  • Siqueira OJF et al (1994) Potential effects of global climate changes for Brazilian agriculture and adaptive strategies for wheat, maize and soybean. Revista Brasileira de Agrometorologia 2:115–129

    Google Scholar 

  • Smith SD, Huxman TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000) Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 408:79–82

    Article  CAS  PubMed  Google Scholar 

  • Sonwani S, Maurya V (2018) Impact of air pollution on the environment and economy. In: Air pollution: sources, impacts and controls. CABI, Oxford. ISBN 9781786393890

    Google Scholar 

  • Sonwani S, Saxena P (2016) Identifying the sources of primary air pollutants and their impact on environmental health: a review. IJETR 6(2):111–130

    Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  PubMed  Google Scholar 

  • Taiz L, Zeiger E (2014) Plant physiology, 6th edn. SAGE, Los Angeles

    Google Scholar 

  • Taiz L, Zeiger E (2016) Plant physiology, 7th edn. SAGE, Los Angeles

    Google Scholar 

  • Taub DR, Wang XZ (2008) Why are nitrogen concentrations in plant tissues lower under elevated CO2? A critical examination of the hypotheses. J Integr Plant Biol 50:1365–1374. https://doi.org/10.1111/j.1744-7909.2008.00754.x

    Article  CAS  PubMed  Google Scholar 

  • Teixeira E, Fischer G, Velthuizen H, Walter C, Ewert F (2011) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorolo 170:206–215. https://doi.org/10.1016/j.agrformet.2011.09.002

    Article  Google Scholar 

  • Teixeira EI, Fischer G, van Velthuizen H, Walter C, Ewert F (2012) Global hot-spots of heat stress on agricultural crops due to climate change. Agric For Meteorol. (in press)

    Google Scholar 

  • Tjoelker MG, Oleksyn J, Lee TD, Reich PB (2001) Direct inhibition of leaf dark respiration by elevated CO2 is minor in 12 grassland species. New Phytol 150:419–424

    Article  CAS  Google Scholar 

  • Tripathy R, Ray SS, Singh AK (2009) Analyzing the impact of rising temperature and CO2 on growth and yield of major cereal crops using simulation model. In: Panigrahy S et al (eds) ISPRS Archives XXXVIII-8/W3 Workshop Proceedings: Impact of Climate Change on Agriculture, India

    Google Scholar 

  • Van De Geijn SC, Goudriaan J (1996) The effects of elevated CO2 and temperature change on transpiration and crop water use. In: Bazzaz F, Sombroek W (eds) Global climate change and agricultural production. FAO and Wiley, New York, pp 101–122

    Google Scholar 

  • Van der Westhuizen MM, Cramer MD (1998) The influence of elevated rhizosphere dissolved inorganic carbon concentrations on respiratory O2 and CO2 efflux in tomato roots. J Exp Bot 49:1977–1985

    Article  Google Scholar 

  • Vanaja M, Maheswari M, Jyothi Lakshmi N, Sathish P, Yadav SK, Salini K, Vagheera P, Vijay Kumar G, Razak A (2015) Variability in growth and yield response of maize genotypes at elevated CO2 concentration. Adv Plants Agric Res 2:42. https://doi.org/10.15406/apar.2015.02.00042

    Article  Google Scholar 

  • Venkataramanan S (2011) Causes and effects of global warming. Indian J Sci Technol 4:226–229. https://doi.org/10.17485/ijst/2011/v4i3/29971

    Article  Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Glob Chang Biol 5:723–741

    Article  Google Scholar 

  • Wang Y, Frei M (2011) Stressed food – The impact of abiotic environmental stresses on crop quality. Agric Ecosyst Environ 141(3):271–286

    Article  Google Scholar 

  • Wang X, Lewis JD, Tissues DT, Seemann JR, Griffin KL (2001) Effects of elevated atmospheric CO2 concentration on leaf dark respiration of Xanthium strumarium in light and in darkness. PNAS 98(5):2479–2484

    Article  CAS  PubMed  Google Scholar 

  • Wien HC (1997) The physiology of vegetable crops. CAB International, Oxon-New York

    Google Scholar 

  • Willett KM, Gillett NP, Jones PD, Thorne PW (2007) Attribution of observed surface humidity changes to human influence. Nature 449:710–712

    Article  CAS  PubMed  Google Scholar 

  • Woodward FI (2002) Curr Opin Plant Biol 5:207–211

    Article  CAS  PubMed  Google Scholar 

  • Yang LX, Huang HY, Yang HJ (2007a) Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crop Res 100:189–199

    Article  Google Scholar 

  • Yang LX, Wang YL, Huang JY (2007b) Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crop Res 102:141–150

    Article  Google Scholar 

  • Ziska LH, Blumenthal DM, Runion GB, Hunt ER, Diaz-Soltero H (2011) Invasive species and climate change: an agronomic perspective. Clim Change 105:13–42

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyan Prakash Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, G.P. (2020). Role of Global Climate Change in Crop Yield Reductions. In: Saxena, P., Srivastava, A. (eds) Air Pollution and Environmental Health. Environmental Chemistry for a Sustainable World, vol 20. Springer, Singapore. https://doi.org/10.1007/978-981-15-3481-2_5

Download citation

Publish with us

Policies and ethics