Skip to main content

The Role of Epigenetics in Type 1 Diabetes

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Type 1 diabetes (T1D) is an autoimmune disease caused by the interaction between genetic alterations and environmental factors. More than 60 susceptible genes or loci of T1D have been identified. Among them, HLA regions are reported to contribute about 50% of genetic susceptibility in Caucasians. There are many environmental factors involved in the pathogenesis of T1D. Environmental factors may change the expression of genes through epigenetic mechanisms, thus inducing individuals with susceptible genes to develop T1D; however, the underlying mechanisms remain poorly understood. The major epigenetic modifications include DNA methylation, histone modification, and non-coding RNA. There has been extensive research on the role of epigenetic mechanisms including aberrant DNA methylation, histone modification, and microRNA in the pathogenesis of T1D. DNA methylation and microRNA have been proposed as biomarkers to predict islet β cell death, which needs further confirmation before any clinical application can be developed. Small molecule inhibitors of histone deacetylases, histone methylation, and DNA methylation are potentially important for preventing T1D or in the reprogramming of insulin-producing cells. This chapter mainly focuses on T1D-related DNA methylation, histone modification, and non-coding RNA, as well as their possible translational potential in the early diagnosis and treatment of T1D.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agardh E et al (2015) Genome-wide analysis of DNA methylation in subjects with type 1 diabetes identifies epigenetic modifications associated with proliferative diabetic retinopathy. BMC Med 13:182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aghazadeh Y, Nostro MC (2017) Cell therapy for type 1 diabetes: current and future strategies. Curr Diab Rep 17(6):37

    Article  PubMed  CAS  Google Scholar 

  • Akerblom HK, Knip M (1998) Putative environmental factors in type 1 diabetes. Diabetes Metab Rev 14(1):31–67

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511

    Article  CAS  PubMed  Google Scholar 

  • Akirav EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci USA 108(47):19018–19023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alisi A, Carsetti R, Nobili V (2011) Pathogen- or damage-associated molecular patterns during nonalcoholic fatty liver disease development. Hepatology 54(5):1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Alkanani AK et al (2015) Alterations in intestinal microbiota correlate with susceptibility to type 1 diabetes. Diabetes 64(10):3510–3520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association (2018) 2. classification and diagnosis of diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care 41(Suppl 1):S13–S27

    Google Scholar 

  • Ando T, Nishimura M, Oka Y (2000) Decitabine (5-Aza-2′-deoxycytidine) decreased DNA methylation and expression of MDR-1 gene in K562/ADM cells. Leukemia 14(11):1915–1920

    Article  CAS  PubMed  Google Scholar 

  • Assmann TS et al (2017a) Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetol 54(5):433–441

    Article  CAS  PubMed  Google Scholar 

  • Assmann TS et al (2017b) MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect 6(8):773–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson MA, Chervonsky A (2012) Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. Diabetologia 55(11):2868–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson MA, Eisenbarth GS, Michels AW (2014) Type 1 diabetes. Lancet 383(9911):69–82

    Article  PubMed  Google Scholar 

  • Atlan-Gepner C et al (1998) A cyclophosphamide-induced autoimmune diabetes. Lancet 352(9125):373–374

    Article  CAS  PubMed  Google Scholar 

  • Backe MB et al (2018) Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function. Mol Cell Endocrinol 460:47–56

    Article  CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal A, Pinney SE (2017) DNA methylation and its role in the pathogenesis of diabetes. Pediatr Diabetes 18(3):167–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JC et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell CG et al (2010) Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics 3:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Belot MP et al (2013) CpG methylation changes within the IL2RA promoter in type 1 diabetes of childhood onset. PLoS One 8(7):e68093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128(4):669–681

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447(7143):396–398

    Article  CAS  PubMed  Google Scholar 

  • Bonifacio E (2015) Predicting type 1 diabetes using biomarkers. Diabetes Care 38(6):989–996

    Article  CAS  PubMed  Google Scholar 

  • Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2(7892):1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Bradfield JP et al (2011) A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet 7(9):e1002293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramswig NC et al (2013) Epigenomic plasticity enables human pancreatic α to β cell reprogramming. J Clin Invest 123(3):1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brode S et al (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+ CD25+ Foxp3+ regulatory T cells. J Immunol 177(10):6603–6612

    Article  CAS  PubMed  Google Scholar 

  • Brodsky I, Medzhitov R (2007) Two modes of ligand recognition by TLRs. Cell 130(6):979–981

    Article  CAS  PubMed  Google Scholar 

  • Burrows MP et al (2015) Microbiota regulates type 1 diabetes through Toll-like receptors. Proc Natl Acad Sci USA 112(32):9973–9977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Fernandez JE, Spector TD, Bell JT (2014) Epigenetics of discordant monozygotic twins: implications for disease. Genome Med 6(7):60

    Article  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94

    Article  CAS  PubMed  Google Scholar 

  • Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304

    Article  CAS  PubMed  Google Scholar 

  • Cepek P et al (2016) DNA methylation and mRNA expression of HLA-DQA1 alleles in type 1 diabetes mellitus. Immunology 148(2):150–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SS, Jenkins AJ, Majewski H (2009) Elevated plasma prostaglandins and acetylated histone in monocytes in type 1 diabetes patients. Diabet Med 26(2):182–186

    Article  CAS  PubMed  Google Scholar 

  • Christensen DP et al (2014) Lysine deacetylase inhibition prevents diabetes by chromatin-independent immunoregulation and beta-cell protection. Proc Natl Acad Sci USA 111(3):1055–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper JD et al (2008) Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet 40(12):1399–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coskun E, Ercin M, Gezginci-Oktayoglu S (2018) The role of epigenetic regulation and pluripotency-related MicroRNAs in differentiation of pancreatic stem cells to beta cells. J Cell Biochem 119(1):455–467

    Article  CAS  PubMed  Google Scholar 

  • Curradi M et al (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22(9):3157–3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang MN et al (2016) Methylation analysis in distinct immune cell subsets in type 1 diabetes. Methods Mol Biol 1433:143–151

    Article  CAS  PubMed  Google Scholar 

  • Davies JL et al (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371(6493):130–136

    Article  CAS  PubMed  Google Scholar 

  • Dawson MA et al (2011) Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478(7370):529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Goffau MC et al (2014) Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia 57(8):1569–1577

    Article  PubMed  CAS  Google Scholar 

  • de Jong VM et al (2016) Survival of autoreactive T lymphocytes by microRNA-mediated regulation of apoptosis through TRAIL and Fas in type 1 diabetes. Genes Immun 17(6):342–348

    Article  PubMed  CAS  Google Scholar 

  • de Ruijter AJ et al (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749

    Article  PubMed  PubMed Central  Google Scholar 

  • De Santis M, Selmi C (2012) The therapeutic potential of epigenetics in autoimmune diseases. Clin Rev Allergy Immunol 42(1):92–101

    Article  CAS  PubMed  Google Scholar 

  • Desai M et al (2006) The variable number of tandem repeats upstream of the insulin gene is a susceptibility locus for latent autoimmune diabetes in adults. Diabetes 55(6):1890–1894

    Article  CAS  PubMed  Google Scholar 

  • Desai M et al (2007) An association analysis of the HLA gene region in latent autoimmune diabetes in adults. Diabetologia 50(1):68–73

    Article  CAS  PubMed  Google Scholar 

  • El Ouaamari A et al (2008) miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes 57(10):2708–2717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elboudwarej E et al (2016) Hypomethylation within gene promoter regions and type 1 diabetes in discordant monozygotic twins. J Autoimmun 68:23–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endesfelder D et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63(6):2006–2014

    Article  CAS  PubMed  Google Scholar 

  • Erener S et al (2013) Circulating miR-375 as a biomarker of beta-cell death and diabetes in mice. Endocrinology 154(2):603–608

    Article  CAS  PubMed  Google Scholar 

  • Erlich H et al (2008) HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes 57(4):1084–1092

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874

    Article  CAS  PubMed  Google Scholar 

  • Farr RJ et al (2013) Circulating non-coding RNAs as biomarkers of beta cell death in diabetes. Pediatr Endocrinol Rev 11(1):14–20

    PubMed  Google Scholar 

  • Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13(2):97–109

    Article  CAS  PubMed  Google Scholar 

  • Feng J et al (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13(4):423–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114

    Article  CAS  PubMed  Google Scholar 

  • Filippakopoulos P et al (2010) Selective inhibition of BET bromodomains. Nature 468(7327):1067–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floyel T, Kaur S, Pociot F (2015) Genes affecting beta-cell function in type 1 diabetes. Curr Diab Rep 15(11):97

    Article  PubMed  CAS  Google Scholar 

  • Fortune MD et al (2015) Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat Genet 47(7):839–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu W et al (2014) Epigenetic modulation of type-1 diabetes via a dual effect on pancreatic macrophages and beta cells. Elife 3:e04631

    Article  PubMed  PubMed Central  Google Scholar 

  • Gale EA (2005) Latent autoimmune diabetes in adults: a guide for the perplexed. Diabetologia 48(11):2195–2199

    Article  CAS  PubMed  Google Scholar 

  • Groop L et al (2006) Latent autoimmune diabetes in adults (LADA)–more than a name. Diabetologia 49(9):1996–1998

    Article  CAS  PubMed  Google Scholar 

  • Gu T et al (2014) Epigenetic analyses of the insulin-like growth factor binding protein 1 gene in type 1 diabetes and diabetic nephropathy. Clin Epigenetics 6(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gulden E, Wong FS, Wen L (2015) The gut microbiota and type 1 diabetes. Clin Immunol 159(2):143–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haumaitre C (2013) Epigenetic regulation of pancreatic islets. Curr Diab Rep 13(5):624–632

    Article  CAS  PubMed  Google Scholar 

  • Haynes A et al (2018) Incidence of childhood onset type 1 diabetes in Western Australia from 1985 to 2016: evidence for a plateau. Pediatr Diabetes 19(4):690–692

    Article  PubMed  Google Scholar 

  • He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    Article  CAS  PubMed  Google Scholar 

  • He YF et al (2011) Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333(6047):1303–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinonen MT, Moulder R, Lahesmaa R (2015) New insights and biomarkers for type 1 diabetes: review for Scandinavian Journal of Immunology. Scand J Immunol 82(3):244–253

    Article  CAS  PubMed  Google Scholar 

  • Hezova R et al (2010) microRNA-342, microRNA-191 and microRNA-510 are differentially expressed in T regulatory cells of type 1 diabetic patients. Cell Immunol 260(2):70–74

    Article  CAS  PubMed  Google Scholar 

  • Hu X et al (2015) Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat Genet 47(8):898–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G et al (2013) Zinc transporter 8 autoantibody (ZnT8A) could help differentiate latent autoimmune diabetes in adults (LADA) from phenotypic type 2 diabetes mellitus. Diabetes Metab Res Rev 29(5):363–368

    Article  CAS  PubMed  Google Scholar 

  • Husseiny MI et al (2012) Development of a quantitative methylation-specific polymerase chain reaction method for monitoring beta cell death in type 1 diabetes. PLoS One 7(10):e47942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Husseiny MI et al (2014) Tissue-specific methylation of human insulin gene and PCR assay for monitoring beta cell death. PLoS One 9(4):e94591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyttinen V et al (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52(4):1052–1055

    Article  CAS  PubMed  Google Scholar 

  • Ichiyama K et al (2015) The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42(4):613–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imagawa A et al (2000) A novel subtype of type 1 diabetes mellitus characterized by a rapid onset and an absence of diabetes-related antibodies. Osaka IDDM Study Group. N Engl J Med 342(5):301–307

    Article  CAS  PubMed  Google Scholar 

  • Issa JP (2007) DNA methylation as a therapeutic target in cancer. Clin Cancer Res 13(6):1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman S (2011) Epigenetics of autoimmune diabetes. Epigenomics 3(5):639–648

    Article  CAS  PubMed  Google Scholar 

  • Jayaraman S (2014) Novel methods of type 1 diabetes treatment. Discov Med 17(96):347–355

    PubMed  Google Scholar 

  • Jayaraman S et al (2013) Transcriptome analysis of epigenetically modulated genome indicates signature genes in manifestation of type 1 diabetes and its prevention in NOD mice. PLoS One 8(1):e55074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerram ST, Dang MN, Leslie RD (2017) The role of epigenetics in type 1 diabetes. Curr Diab Rep 17(10):89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karlic R et al (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107(7):2926–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsarou A et al (2017) Type 1 diabetes mellitus. Nat Rev Dis Primers 3:17016

    Article  PubMed  Google Scholar 

  • Katz LS, Geras-Raaka E, Gershengorn MC (2013) Reprogramming adult human dermal fibroblasts to islet-like cells by epigenetic modification coupled to transcription factor modulation. Stem Cells Dev 22(18):2551–2560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai T, Akira S (2007) Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 13(11):460–469

    Article  CAS  PubMed  Google Scholar 

  • Kemppainen KM et al (2015) Early childhood gut microbiomes show strong geographic differences among subjects at high risk for type 1 diabetes. Diabetes Care 38(2):329–332

    Article  PubMed  Google Scholar 

  • Khan S, Jena G (2016) Valproic acid improves glucose homeostasis by increasing beta-cell proliferation, function, and reducing its apoptosis through HDAC inhibition in juvenile diabetic rat. J Biochem Mol Toxicol 30(9):438–446

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa Y, Ohkura N (2014) Treating type-1 diabetes with an epigenetic drug. Elife 3:e05720

    Article  PubMed  PubMed Central  Google Scholar 

  • Klinke DJ 2nd (2008) Extent of beta cell destruction is important but insufficient to predict the onset of type 1 diabetes mellitus. PLoS One 3(1):e1374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knip M, Siljander H (2016) The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 12(3):154–167

    Article  CAS  PubMed  Google Scholar 

  • Knip M, Simell O (2012) Environmental triggers of type 1 diabetes. Cold Spring Harb Perspect Med 2(7):a007690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Knip M et al (2005) Environmental triggers and determinants of type 1 diabetes. Diabetes 54(Suppl 2):S125–S136

    Article  CAS  PubMed  Google Scholar 

  • Kostic AD et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17(2):260–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kretsovali A, Hadjimichael C, Charmpilas N (2012) Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012:184154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kroon E et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26(4):443–452

    Article  CAS  PubMed  Google Scholar 

  • Kubota T, Miyake K, Hirasawa T (2012) Epigenetic understanding of gene-environment interactions in psychiatric disorders: a new concept of clinical genetics. Clin Epigenetics 4(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugelberg E (2017) Microbiota: diet can protect against type 1 diabetes. Nat Rev Immunol 17(5):279

    Article  CAS  PubMed  Google Scholar 

  • Kuo MH, Allis CD (1998) Roles of histone acetyltransferases and deacetylases in gene regulation. BioEssays 20(8):615–626

    Article  CAS  PubMed  Google Scholar 

  • Kyvik KO, Green A, Beck-Nielsen H (1995) Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins. BMJ 311(7010):913–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebastchi J et al (2013) Immune therapy and beta-cell death in type 1 diabetes. Diabetes 62(5):1676–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehuen A (2015) A double-edged sword against type 1 diabetes. N Engl J Med 372(8):778–780

    Article  CAS  PubMed  Google Scholar 

  • Lehuen A et al (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10(7):501–513

    Article  CAS  PubMed  Google Scholar 

  • Leoni F et al (2002) The antitumor histone deacetylase inhibitor suberoylanilide hydroxamic acid exhibits antiinflammatory properties via suppression of cytokines. Proc Natl Acad Sci USA 99(5):2995–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leoni F et al (2005) The histone deacetylase inhibitor ITF2357 reduces production of pro-inflammatory cytokines in vitro and systemic inflammation in vivo. Mol Med 11(1–12):1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis EC et al (2011) The oral histone deacetylase inhibitor ITF2357 reduces cytokines and protects islet β cells in vivo and in vitro. Mol Med 17(5–6):369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2011) Abnormal DNA methylation in CD4+ T cells from people with latent autoimmune diabetes in adults. Diabetes Res Clin Pract 94(2):242–248

    Article  CAS  PubMed  Google Scholar 

  • Licht JD (2015) DNA methylation inhibitors in cancer therapy: the immunity dimension. Cell 162(5):938–939

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Li H (2017) Reduced histone H3 lysine 9 methylation contributes to the pathogenesis of latent autoimmune diabetes in adults via regulation of SUV39H2 and KDM4C. J Diabetes Res 2017:8365762

    PubMed  PubMed Central  Google Scholar 

  • Liu L et al (2015) Latent autoimmune diabetes in adults with low-titer GAD antibodies: similar disease progression with type 2 diabetes: a nationwide, multicenter prospective study (LADA China Study 3). Diabetes Care 38(1):16–21

    Article  CAS  PubMed  Google Scholar 

  • Livanos AE et al (2016) Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 1(11):16140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lundh M et al (2012) Histone deacetylases 1 and 3 but not 2 mediate cytokine-induced beta cell apoptosis in INS-1 cells and dispersed primary islets from rats and are differentially regulated in the islets of type 1 diabetic children. Diabetologia 55(9):2421–2431

    Article  CAS  PubMed  Google Scholar 

  • Luo S et al (2016) HLA genetic discrepancy between latent autoimmune diabetes in adults and type 1 diabetes: LADA China Study No. 6. J Clin Endocrinol Metab 101(4):1693–1700

    Article  CAS  Google Scholar 

  • MacFarlane AJ, Strom A, Scott FW (2009) Epigenetics: deciphering how environmental factors may modify autoimmune type 1 diabetes. Mamm Genome 20(9–10):624–632

    Article  CAS  PubMed  Google Scholar 

  • Manzar GS, Kim EM, Zavazava N (2017) Demethylation of induced pluripotent stem cells from type 1 diabetic patients enhances differentiation into functional pancreatic beta cells. J Biol Chem 292(34):14066–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand L et al (2016) miRNA-375 a sensor of glucotoxicity is altered in the serum of children with newly diagnosed type 1 diabetes. J Diabetes Res 2016:1869082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marino E et al (2017) Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18(5):552–562

    Article  CAS  PubMed  Google Scholar 

  • Mayer-Davis EJ et al (2017) Incidence trends of type 1 and type 2 diabetes among youths, 2002–2012. N Engl J Med 376(15):1419–1429

    Article  PubMed  PubMed Central  Google Scholar 

  • McClymont SA et al (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin KA et al (2016) Identification of tetraspanin-7 as a target of autoantibodies in type 1 diabetes. Diabetes 65(6):1690–1698

    Article  CAS  PubMed  Google Scholar 

  • Meier BC, Wagner BK (2014) Inhibition of HDAC3 as a strategy for developing novel diabetes therapeutics. Epigenomics 6(2):209–214

    Article  CAS  PubMed  Google Scholar 

  • Merlo A et al (1995) 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1(7):686–692

    Article  CAS  PubMed  Google Scholar 

  • Meylan E, Tschopp J, Karin M (2006) Intracellular pattern recognition receptors in the host response. Nature 442(7098):39–44

    Article  CAS  PubMed  Google Scholar 

  • Miao F et al (2008) Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes 57(12):3189–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao F et al (2012) Profiles of epigenetic histone post-translational modifications at type 1 diabetes susceptible genes. J Biol Chem 287(20):16335–16345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milanesi A et al (2011) Differentiation of nestin-positive cells derived from bone marrow into pancreatic endocrine and ductal cells in vitro. J Endocrinol 209(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Millman JR et al (2016) Generation of stem cell-derived beta-cells from patients with type 1 diabetes. Nat Commun 7:11463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimbacas A et al (2004) The association between HLA DQ genetic polymorphism and type 1 diabetes in a case-parent study conducted in an admixed population. Eur J Epidemiol 19(10):931–934

    Article  CAS  PubMed  Google Scholar 

  • Needell JC, Zipris D (2016) The role of the intestinal microbiome in type 1 diabetes pathogenesis. Curr Diab Rep 16(10):89

    Article  PubMed  CAS  Google Scholar 

  • Neiman D et al (2017) Islet cells share promoter hypomethylation independently of expression, but exhibit cell-type-specific methylation in enhancers. Proc Natl Acad Sci USA 114(51):13525–13530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen LB et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362

    PubMed  PubMed Central  Google Scholar 

  • Noble JA, Erlich HA (2012) Genetics of type 1 diabetes. Cold Spring Harb Perspect Med 2(1):a007732

    Article  PubMed  PubMed Central  Google Scholar 

  • Noble JA et al (1996) The role of HLA class II genes in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex families. Am J Hum Genet 59(5):1134–1148

    CAS  PubMed  PubMed Central  Google Scholar 

  • Notkins AL, Lernmark A (2001) Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 108(9):1247–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oka M et al (2005) De novo DNA methyltransferases Dnmt3a and Dnmt3b primarily mediate the cytotoxic effect of 5-aza-2′-deoxycytidine. Oncogene 24(19):3091–3099

    Article  CAS  PubMed  Google Scholar 

  • Okano M et al (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Olmos P et al (1988) The significance of the concordance rate for type 1 (insulin-dependent) diabetes in identical twins. Diabetologia 31(10):747–750

    Article  CAS  PubMed  Google Scholar 

  • Olsen JA et al (2016) Circulating differentially methylated amylin DNA as a biomarker of beta-cell loss in type 1 diabetes. PLoS One 11(4):e0152662

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Onengut-Gumuscu S et al (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47(4):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orban T et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28(4):177–187

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154(6):1190–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osipova J et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99(9):E1661–E1665

    Article  CAS  PubMed  Google Scholar 

  • Pagliuca FW et al (2014) Generation of functional human pancreatic beta cells in vitro. Cell 159(2):428–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palazzo AF, Lee ES (2015) Non-coding RNA: what is functional and what is junk? Front Genet 6:2

    Google Scholar 

  • Patel T et al (2011) Chromatin remodeling resets the immune system to protect against autoimmune diabetes in mice. Immunol Cell Biol 89(5):640–649

    Article  CAS  PubMed  Google Scholar 

  • Patterson CC et al (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373(9680):2027–2033

    Article  PubMed  Google Scholar 

  • Paul DS et al (2016) Increased DNA methylation variability in type 1 diabetes across three immune effector cell types. Nat Commun 7:13555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paun A, Yau C, Danska JS (2017) The influence of the microbiome on type 1 diabetes. J Immunol 198(2):590–595

    Article  CAS  PubMed  Google Scholar 

  • Pearson JA, Wong FS, Wen L (2016) The importance of the non obese diabetic (NOD) mouse model in autoimmune diabetes. J Autoimmun 66:76–88

    Article  CAS  PubMed  Google Scholar 

  • Pennarossa G et al (2013) Brief demethylation step allows the conversion of adult human skin fibroblasts into insulin-secreting cells. Proc Natl Acad Sci USA 110(22):8948–8953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeifer GP (2016) Epigenetics: an elusive DNA base in mammals. Nature 532(7599):319–320

    Article  CAS  PubMed  Google Scholar 

  • Pileggi A et al (2013) MicroRNAs in islet immunobiology and transplantation. Immunol Res 57(1–3):185–196

    Article  CAS  PubMed  Google Scholar 

  • Pociot F (2017) Type 1 diabetes genome-wide association studies: not to be lost in translation. Clin Transl Immunol 6(12):e162

    Article  CAS  Google Scholar 

  • Pociot F et al (2010) Genetics of type 1 diabetes: what’s next? Diabetes 59(7):1561–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poy MN et al (2009) miR-375 maintains normal pancreatic α- and β-cell mass. Proc Natl Acad Sci USA 106(14):5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pozzilli P, Di Mario U (2001) Autoimmune diabetes not requiring insulin at diagnosis (latent autoimmune diabetes of the adult): definition, characterization, and potential prevention. Diabetes Care 24(8):1460–1467

    Article  CAS  PubMed  Google Scholar 

  • Qin K et al (2018) SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 61(4):906–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rakyan VK et al (2011) Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 7(9):e1002300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redondo MJ et al (2001) Heterogeneity of type I diabetes: analysis of monozygotic twins in Great Britain and the United States. Diabetologia 44(3):354–362

    Article  CAS  PubMed  Google Scholar 

  • Rewers M, Ludvigsson J (2016) Environmental risk factors for type 1 diabetes. Lancet 387(10035):2340–2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rezania A et al (2014) Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat Biotechnol 32(11):1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Riddihough G, Zahn LM (2010) Epigenetics. What is epigenetics? Introduction. Science 330(6004):611

    Article  CAS  PubMed  Google Scholar 

  • Risch N (1987) Assessing the role of HLA-linked and unlinked determinants of disease. Am J Hum Genet 40(1):1–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-Perez F et al (2013) MicroRNAs miR-21a and miR-93 are down regulated in peripheral blood mononuclear cells (PBMCs) from patients with type 1 diabetes. Immunobiology 218(5):733–737

    Article  CAS  PubMed  Google Scholar 

  • Samandari N et al (2017) Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 60(2):354–363

    Article  CAS  PubMed  Google Scholar 

  • Santin I, Eizirik DL (2013) Candidate genes for type 1 diabetes modulate pancreatic islet inflammation and beta-cell apoptosis. Diabetes Obes Metab 15(Suppl 3):71–81

    Article  CAS  PubMed  Google Scholar 

  • Seal J et al (2012) Identification of a novel series of BET family bromodomain inhibitors: binding mode and profile of I-BET151 (GSK1210151A). Bioorg Med Chem Lett 22(8):2968–2972

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani G et al (2011) Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab Res Rev 27(8):862–866

    Article  CAS  PubMed  Google Scholar 

  • She JX, Marron MP (1998) Genetic susceptibility factors in type 1 diabetes: linkage, disequilibrium and functional analyses. Curr Opin Immunol 10(6):682–689

    Article  CAS  PubMed  Google Scholar 

  • Sklenarova J et al (2017) Glucokinase gene may be a more suitable target than the insulin gene for detection of beta cell death. Endocrinology 158(7):2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Snowhite IV et al (2017) Association of serum microRNAs with islet autoimmunity, disease progression and metabolic impairment in relatives at risk of type 1 diabetes. Diabetologia 60(8):1409–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sordi V, Pellegrini S, Piemonti L (2017) Immunological issues after stem cell-based β cell replacement. Curr Diab Rep 17(9):68

    Article  PubMed  CAS  Google Scholar 

  • Sosenko JM et al (2015) A new approach for diagnosing type 1 diabetes in autoantibody-positive individuals based on prediction and natural history. Diabetes Care 38(2):271–276

    Article  CAS  PubMed  Google Scholar 

  • Speed D et al (2012) Improved heritability estimation from genome-wide SNPs. Am J Hum Genet 91(6):1011–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefan M et al (2014) DNA methylation profiles in type 1 diabetes twins point to strong epigenetic effects on etiology. J Autoimmun 50:33–37

    Article  CAS  PubMed  Google Scholar 

  • Stenstrom G et al (2005) Latent autoimmune diabetes in adults: definition, prevalence, beta-cell function, and treatment. Diabetes 54(Suppl 2):S68–S72

    Article  PubMed  Google Scholar 

  • Storling J, Brorsson CA (2013) Candidate genes expressed in human islets and their role in the pathogenesis of type 1 diabetes. Curr Diab Rep 13(5):633–641

    Article  CAS  PubMed  Google Scholar 

  • Storling J, Pociot F (2017) Type 1 diabetes candidate genes linked to pancreatic islet cell inflammation and beta-cell apoptosis. Genes (Basel) 8(2):72

    Article  PubMed Central  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  • Tai N, Wong FS, Wen L (2016) The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes. J Autoimmun 71:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd JA et al (2007) Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat Genet 39(7):857–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuomi T et al (1993) Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 42(2):359–362

    Article  CAS  PubMed  Google Scholar 

  • Walker LS, von Herrath M (2016) CD4 T cell differentiation in type 1 diabetes. Clin Exp Immunol 183(1):16–29

    Article  CAS  PubMed  Google Scholar 

  • Walther D et al (2016) Tetraspanin 7 autoantibodies in type 1 diabetes. Diabetologia 59(9):1973–1976

    Article  CAS  PubMed  Google Scholar 

  • Wang Z et al (2013) DNA methylation impairs TLR9 induced Foxp3 expression by attenuating IRF-7 binding activity in fulminant type 1 diabetes. J Autoimmun 41:50–59

    Article  PubMed  CAS  Google Scholar 

  • Wang Z et al (2017) Beyond genetics: what causes type 1 diabetes. Clin Rev Allergy Immunol 52(2):273–286

    Article  CAS  PubMed  Google Scholar 

  • Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145):661–678

    Google Scholar 

  • Wen L et al (2008) Innate immunity and intestinal microbiota in the development of Type 1 diabetes. Nature 455(7216):1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng J et al (2018) Incidence of type 1 diabetes in China, 2010–13: population based study. BMJ 360:j5295

    Article  PubMed  PubMed Central  Google Scholar 

  • Willcox A et al (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155(2):173–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Chang C, Zhou Z (2014) Molecular mechanisms in autoimmune type 1 diabetes: a critical review. Clin Rev Allergy Immunol 47(2):174–192

    Article  CAS  PubMed  Google Scholar 

  • Yang CS, Li Z, Rana TM (2011) microRNAs modulate iPS cell generation. RNA 17(8):1451–1460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang M et al (2015) Decreased miR-146 expression in peripheral blood mononuclear cells is correlated with ongoing islet autoimmunity in type 1 diabetes patients 1miR-146. J Diabetes 7(2):158–165

    Article  CAS  PubMed  Google Scholar 

  • Yi SA et al (2018) S6K1 controls epigenetic plasticity for the expression of pancreatic α/β cell marker genes. J Cell Biochem 119(8):6674–6683

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2016) MicroRNAs in CD4(+) T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. J Autoimmun 68:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zhang K et al (2017) Circulating unmethylated insulin DNA as a potential non-invasive biomarker of beta cell death in type 1 diabetes: a review and future prospect. Clin Epigenetics 9:44

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zheng Y, Wang Z, Zhou Z (2017) miRNAs: novel regulators of autoimmunity-mediated pancreatic β-cell destruction in type 1 diabetes. Cell Mol Immunol 14(6):488–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Q et al (2009) Induction of Foxp3 demethylation increases regulatory CD4+ CD25+ T cells and prevents the occurrence of diabetes in mice. J Mol Med (Berl) 87(12):1191–1205

    Article  CAS  Google Scholar 

  • Zhou Z et al (2013) Frequency, immunogenetics, and clinical characteristics of latent autoimmune diabetes in China (LADA China study): a nationwide, multicenter, clinic-based cross-sectional study. Diabetes 62(2):543–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zipris D (2008) Innate immunity and its role in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 15(4):326–331

    Article  CAS  PubMed  Google Scholar 

  • Zullo A et al (2017) Epigenetics and type 1 diabetes: mechanisms and translational applications. Transl Res 185:85–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Key Research and Development Program of China (2016YFC1305000); the National Natural Science Foundation of China (No. 81873634, 81400783); the National Key Technology R&D program (2015BAI12B13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiguang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xie, Z., Chang, C., Huang, G., Zhou, Z. (2020). The Role of Epigenetics in Type 1 Diabetes. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_9

Download citation

Publish with us

Policies and ethics