Skip to main content

Epigenetics and the Environment in Airway Disease: Asthma and Allergic Rhinitis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Asthma and rhinitis are complex, heterogeneous diseases characterized by chronic inflammation of the upper and lower airways. While genome-wide association studies (GWAS) have identified a number of susceptible loci and candidate genes associated with the pathogenesis of asthma and allergic rhinitis (AR), the risk-associated alleles account for only a very small percent of the genetic risk. In allergic airway and other complex diseases, it is thought that epigenetic modifications, including DNA methylation, histone modifications, and non-coding microRNAs, caused by complex interactions between the underlying genome and the environment may account for some of this “missing heritability” and may explain the high degree of plasticity in immune responses. In this chapter, we will focus on the current knowledge of classical epigenetic modifications, DNA methylation and histone modifications, and their potential role in asthma and AR. In particular, we will review epigenetic variations associated with maternal airway disease, demographics, environment, and non-specific associations. The role of specific genetic haplotypes in environmentally induced epigenetic changes are also discussed. A major limitation of many of the current studies of asthma epigenetics is that they evaluate epigenetic modifications in both allergic and non-allergic asthma, making it difficult to distinguish those epigenetic modifications that mediate allergic asthma from those that mediate non-allergic asthma. Additionally, most DNA methylation studies in asthma use peripheral or cord blood due to poor accessibility of airway cells or tissue. Unlike DNA sequences, epigenetic alterations are quite cell- and tissue-specific, and epigenetic changes found in airway tissue or cells may be discordant from that of circulating blood. These two confounding factors should be considered when reviewing epigenetic studies in allergic airway disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alroqi FJ, Chatila TA (2016) T regulatory cell biology in health and disease. Curr Allergy Asthma Rep 16(4):27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Altman MC, Whalen E, Togias A, O’Connor GT, Bacharier LB, Bloomberg GR et al (2018) Allergen-induced activation of natural killer cells represents an early-life immune response in the development of allergic asthma. J Allergy Clin Immunol 142(6):1856–1866

    Article  CAS  PubMed  Google Scholar 

  • Backman H, Raisanen P, Hedman L, Stridsman C, Andersson M, Lindberg A et al (2017) Increased prevalence of allergic asthma from 1996 to 2006 and further to 2016-results from three population surveys. Clin Exp Allergy 47(11):1426–1435

    Article  PubMed  Google Scholar 

  • Barnes PJ (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 131(3):636–645

    Article  CAS  PubMed  Google Scholar 

  • Barrett EG (2008) Maternal influence in the transmission of asthma susceptibility. Pulm Pharmacol Ther 21(3):474–484

    Article  CAS  PubMed  Google Scholar 

  • Barton SJ, Ngo S, Costello P, Garratt E, El-Heis S, Antoun E et al (2017) DNA methylation of Th2 lineage determination genes at birth is associated with allergic outcomes in childhood. Clin Exp Allergy 47(12):1599–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berhane K, Zhang Y, Linn WS, Rappaport EB, Bastain TM, Salam MT et al (2011) The effect of ambient air pollution on exhaled nitric oxide in the Children’s Health Study. Eur Respir J 37(5):1029–1036

    Article  CAS  PubMed  Google Scholar 

  • Brunst KJ, Leung YK, Ryan PH, Khurana Hershey GK, Levin L, Ji H et al (2013) Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. J Allergy Clin Immunol 131(2):592–594, e591–593

    Article  CAS  Google Scholar 

  • Buhl R (2003) Omalizumab (Xolair) improves quality of life in adult patients with allergic asthma: a review. Respir Med 97(2):123–129

    Article  CAS  PubMed  Google Scholar 

  • Chan MA, Ciaccio CE, Gigliotti NM, Rezaiekhaligh M, Siedlik JA, Kennedy K et al (2017) DNA methylation levels associated with race and childhood asthma severity. J Asthma 54(8):825–832

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Wang T, Pino-Yanes M, Forno E, Liang L, Yan Q et al (2017) An epigenome-wide association study of total serum IgE in Hispanic children. J Allergy Clin Immunol 140(2):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE et al (2018) Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173(6):1385–1397.e14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung Y, Chang SH, Martinez GJ, Yang XO, Nurieva R, Kang HS et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30(4):576–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clifford RL, Patel JK, John AE, Tatler AL, Mazengarb L, Brightling CE et al (2015) CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET. Am J Physiol Lung Cell Mol Physiol 308(9):L962–L972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui ZL, Gu W, Ding T, Peng XH, Chen X, Luan CY et al (2013) Histone modifications of Notch1 promoter affect lung CD4+ T cell differentiation in asthmatic rats. Int J Immunopathol Pharmacol 26(2):371–381

    Article  CAS  PubMed  Google Scholar 

  • Curtin JA, Simpson A, Belgrave D, Semic-Jusufagic A, Custovic A, Martinez FD (2013) Methylation of IL-2 promoter at birth alters the risk of asthma exacerbations during childhood. Clin Exp Allergy 43(3):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies ER, Kelly JF, Howarth PH, Wilson DI, Holgate ST, Davies DE et al (2016) Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight 1(11):e87632

    Google Scholar 

  • De Greve G, Hellings PW, Fokkens WJ, Pugin B, Steelant B, Seys SF (2017) Endotype-driven treatment in chronic upper airway diseases. Clin Transl Allergy 7:22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425(6958):577–584

    Article  CAS  PubMed  Google Scholar 

  • DeVries A, Wlasiuk G, Miller SJ, Bosco A, Stern DA, Lohman IC et al (2017) Epigenome-wide analysis links SMAD3 methylation at birth to asthma in children of asthmatic mothers. J Allergy Clin Immunol 140(2):534–542

    Article  CAS  PubMed  Google Scholar 

  • Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aissi D, Wahl S et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet 383(9933):1990–1998

    Article  CAS  PubMed  Google Scholar 

  • Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C et al (2011) Exposure to environmental microorganisms and childhood asthma. N Engl J Med 364(8):701–709

    Article  CAS  PubMed  Google Scholar 

  • Ferreira MA, Matheson MC, Tang CS, Granell R, Ang W, Hui J et al (2014) Genome-wide association analysis identifies 11 risk variants associated with the asthma with hay fever phenotype. J Allergy Clin Immunol 133(6):1564–1571

    Article  CAS  PubMed  Google Scholar 

  • Fraser HB, Lam LL, Neumann SM, Kobor MS (2012) Population-specificity of human DNA methylation. Genome Biol 13(2):R8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu X, Wang X, Duan Z, Zhang C, Fu X, Yang J et al (2015) Histone H3k9 and H3k27 acetylation regulates IL-4/STAT6-mediated Igε transcription in B lymphocytes. Anat Rec (Hoboken) 298(8):1431–1439

    Article  CAS  Google Scholar 

  • Gao L, Millstein J, Siegmund KD, Dubeau L, Maguire R, Gilliland FD et al (2017) Epigenetic regulation of AXL and risk of childhood asthma symptoms. Clin Epigenetics 9:121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gregory DJ, Kobzik L, Yang Z, McGuire CC, Fedulov AV (2017) Transgenerational transmission of asthma risk after exposure to environmental particles during pregnancy. Am J Physiol Lung Cell Mol Physiol 313(2):L395–L405

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunawardhana LP, Baines KJ, Mattes J, Murphy VE, Simpson JL, Gibson PG (2014a) Differential DNA methylation profiles of infants exposed to maternal asthma during pregnancy. Pediatr Pulmonol 49(9):852–862

    Article  PubMed  Google Scholar 

  • Gunawardhana LP, Gibson PG, Simpson JL, Powell H, Baines KJ (2014b) Activity and expression of histone acetylases and deacetylases in inflammatory phenotypes of asthma. Clin Exp Allergy 44(1):47–57

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Zhang X, Sharp LK, Shannon JJ, Weiss KB (2008) Geographic variability in childhood asthma prevalence in Chicago. J Allergy Clin Immunol 121(3):639–645, e631

    PubMed  Google Scholar 

  • Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S (2017) Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma 54(9):893–904

    Article  CAS  PubMed  Google Scholar 

  • Hamada K, Suzaki Y, Goldman A, Ning YY, Goldsmith C, Palecanda A et al (2003) Allergen-independent maternal transmission of asthma susceptibility. J Immunol 170(4):1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Hammad H, Lambrecht BN (2006) Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J Allergy Clin Immunol 118(2):331–336

    Article  CAS  PubMed  Google Scholar 

  • Hastie AT, Moore WC, Meyers DA, Vestal PL, Li H, Peters SP et al (2010) Analyses of asthma severity phenotypes and inflammatory proteins in subjects stratified by sputum granulocytes. J Allergy Clin Immunol 125(5):1028–1036.e1013

    Article  PubMed  CAS  Google Scholar 

  • Hew M, Bhavsar P, Torrego A, Meah S, Khorasani N, Barnes PJ et al (2006) Relative corticosteroid insensitivity of peripheral blood mononuclear cells in severe asthma. Am J Respir Crit Care Med 174(2):134–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosoki K, Itazawa T, Boldogh I, Sur S (2016) Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr Opin Allergy Clin Immunol 16(1):45–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T, Breton C, Salam MT, McConnell R, Wenten M, Gauderman WJ et al (2010) Role of inducible nitric oxide synthase in asthma risk and lung function growth during adolescence. Thorax 65(2):139–145

    Article  PubMed  Google Scholar 

  • Ito K, Caramori G, Lim S, Oates T, Chung KF, Barnes PJ et al (2002) Expression and activity of histone deacetylases in human asthmatic airways. Am J Respir Crit Care Med 166(3):392–396

    Article  PubMed  Google Scholar 

  • Jahreis S, Trump S, Bauer M, Bauer T, Thurmann L, Feltens R et al (2018) Maternal phthalate exposure promotes allergic airway inflammation over 2 generations through epigenetic modifications. J Allergy Clin Immunol 141(2):741–753

    Article  CAS  PubMed  Google Scholar 

  • Jiang XG, Yang XD, Lv Z, Zhuang PH (2018) Elevated serum levels of TNF-alpha, IL-8, and ECP can be involved in the development and progression of bronchial asthma. J Asthma 55(2):111–118

    Article  CAS  PubMed  Google Scholar 

  • Jongepier H, Boezen HM, Dijkstra A, Howard TD, Vonk JM, Koppelman GH et al (2004) Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin Exp Allergy 34(5):757–760

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Lovinsky-Desir S, Yan B, Torrone D, Lawrence J, Jezioro JR et al (2017a) Effect of personal exposure to black carbon on changes in allergic asthma gene methylation measured 5 days later in urban children: importance of allergic sensitization. Clin Epigenetics 9:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jung KH, Torrone D, Lovinsky-Desir S, Perzanowski M, Bautista J, Jezioro JR et al (2017b) Short-term exposure to PM2.5 and vanadium and changes in asthma gene DNA methylation and lung function decrements among urban children. Respir Res 18(1):63

    Google Scholar 

  • Kashima L, Toyota M, Mita H, Suzuki H, Idogawa M, Ogi K et al (2009) CHFR, a potential tumor suppressor, downregulates interleukin-8 through the inhibition of NF-kappaB. Oncogene 28(29):2643–2653

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, DeKruyff RH, Umetsu DT (2010) The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol 11(7):577–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuriakose JS, Miller RL (2010) Environmental epigenetics and allergic diseases: recent advances. Clin Exp Allergy 40(11):1602–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lajunen TK, Jaakkola JJ, Jaakkola MS (2016) Interleukin 6 SNP rs1800797 associates with the risk of adult-onset asthma. Genes Immun 17(3):193–198

    Article  CAS  PubMed  Google Scholar 

  • Lambrecht BN (2001) The dendritic cell in allergic airway diseases: a new player to the game. Clin Exp Allergy 31(2):206–218

    Article  CAS  PubMed  Google Scholar 

  • Leomicronn B (2017) T cells in allergic asthma: key players beyond the Th2 pathway. Curr Allergy Asthma Rep 17(7):43

    Article  PubMed  CAS  Google Scholar 

  • Li J, Zhang Y, Zhang L (2015) Discovering susceptibility genes for allergic rhinitis and allergy using a genome-wide association study strategy. Curr Opin Allergy Clin Immunol 15(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Li C, Sheng A, Jia X, Zeng Z, Zhang X, Zhao W et al (2018a) Th17/Treg dysregulation in allergic asthmatic children is associated with elevated notch expression. J Asthma 55(1):1–7

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Mu Z, Wang H, Liu J, Jiang F (2018b) The role of particulate matters on methylation of IFN-gamma and IL-4 promoter genes in pediatric allergic rhinitis. Oncotarget 9(25):17406–17419

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang L, Willis-Owen SAG, Laprise C, Wong KCC, Davies GA, Hudson TJ et al (2015) An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 520(7549):670–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim RH, Kobzik L, Dahl M (2010) Risk for asthma in offspring of asthmatic mothers versus fathers: a meta-analysis. PLoS One 5(4):e10134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martel MJ, Rey E, Beauchesne MF, Malo JL, Perreault S, Forget A et al (2009) Control and severity of asthma during pregnancy are associated with asthma incidence in offspring: two-stage case-control study. Eur Respir J 34(3):579–587

    Article  PubMed  Google Scholar 

  • Martinez FD, Vercelli D (2013) Asthma. Lancet 382(9901):1360–1372

    Article  PubMed  Google Scholar 

  • Meltzer EO (2016) Allergic rhinitis: burden of illness, quality of life, comorbidities, and control. Immunol Allergy Clin North Am 36(2):235–248

    Article  PubMed  Google Scholar 

  • Meyers DA, Bleecker ER, Holloway JW, Holgate ST (2014) Asthma genetics and personalised medicine. Lancet Respir Med 2(5):405–415

    Article  PubMed  PubMed Central  Google Scholar 

  • Michel S, Busato F, Genuneit J, Pekkanen J, Dalphin JC, Riedler J et al (2013) Farm exposure and time trends in early childhood may influence DNA methylation in genes related to asthma and allergy. Allergy 68(3):355–364

    Article  CAS  PubMed  Google Scholar 

  • Mikhaylova L, Zhang Y, Kobzik L, Fedulov AV (2013) Link between epigenomic alterations and genome-wide aberrant transcriptional response to allergen in dendritic cells conveying maternal asthma risk. PLoS One 8(8):e70387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moffatt MF, Kabesch M, Liang L, Dixon AL, Strachan D, Heath S et al (2007) Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448(7152):470–473

    Article  CAS  PubMed  Google Scholar 

  • Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S et al (2010) A large-scale, consortium-based genomewide association study of asthma. N Engl J Med 363(13):1211–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales E, Bustamante M, Vilahur N, Escaramis G, Montfort M, de Cid R et al (2012) DNA hypomethylation at ALOX12 is associated with persistent wheezing in childhood. Am J Respir Crit Care Med 185(9):937–943

    Article  CAS  PubMed  Google Scholar 

  • Morin A, Laviolette M, Pastinen T, Boulet LP, Laprise C (2017) Combining omics data to identify genes associated with allergic rhinitis. Clin Epigenetics 9:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muraro A, Lemanske RF Jr, Hellings PW, Akdis CA, Bieber T, Casale TB et al (2016) Precision medicine in patients with allergic diseases: airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 137(5):1347–1358

    Article  PubMed  Google Scholar 

  • Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J et al (2010) Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 126(4):845–852.e810

    Article  PubMed  CAS  Google Scholar 

  • Naumova AK, Al Tuwaijri A, Morin A, Vaillancourt VT, Madore AM, Berlivet S et al (2013) Sex- and age-dependent DNA methylation at the 17q12-q21 locus associated with childhood asthma. Hum Genet 132(7):811–822

    Article  CAS  PubMed  Google Scholar 

  • Nicodemus-Johnson J, Myers RA, Sakabe NJ, Sobreira DR, Hogarth DK, Naureckas ET et al (2016a) DNA methylation in lung cells is associated with asthma endotypes and genetic risk. JCI Insight 1(20):e90151

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicodemus-Johnson J, Naughton KA, Sudi J, Hogarth K, Naurekas ET, Nicolae DL et al (2016b) Genome-wide methylation study identifies an IL-13-induced epigenetic signature in asthmatic airways. Am J Respir Crit Care Med 193(4):376–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nie M, Knox AJ, Pang L (2005) beta2-Adrenoceptor agonists, like glucocorticoids, repress eotaxin gene transcription by selective inhibition of histone H4 acetylation. J Immunol 175(1):478–486

    Article  CAS  PubMed  Google Scholar 

  • Nie W, Liu Y, Bian J, Li B, Xiu Q (2013) Effects of polymorphisms −1112C/T and +2044A/G in interleukin-13 gene on asthma risk: a meta-analysis. PLoS One 8(2):e56065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • North ML, Ellis AK (2011) The role of epigenetics in the developmental origins of allergic disease. Ann Allergy Asthma Immunol 106(5):355–361; quiz 362

    Article  CAS  Google Scholar 

  • North ML, Jones MJ, MacIsaac JL, Morin AM, Steacy LM, Gregor A et al (2018) Blood and nasal epigenetics correlate with allergic rhinitis symptom development in the environmental exposure unit. Allergy 73(1):196–205

    Article  CAS  PubMed  Google Scholar 

  • Nurmagambetov T, Kuwahara R, Garbe P (2018) The economic burden of asthma in the United States, 2008–2013. Ann Am Thorac Soc 15(3):348–356

    Article  PubMed  Google Scholar 

  • Ober C, Yao TC (2011) The genetics of asthma and allergic disease: a 21st century perspective. Immunol Rev 242(1):10–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oettgen HC, Geha RS (2001) IgE regulation and roles in asthma pathogenesis. J Allergy Clin Immunol 107(3):429–440

    Article  CAS  PubMed  Google Scholar 

  • Ohshima M, Yokoyama A, Ohnishi H, Hamada H, Kohno N, Higaki J et al (2007) Overexpression of suppressor of cytokine signalling-5 augments eosinophilic airway inflammation in mice. Clin Exp Allergy 37(5):735–742

    Article  CAS  PubMed  Google Scholar 

  • Paaso EM, Jaakkola MS, Rantala AK, Hugg TT, Jaakkola JJ (2014) Allergic diseases and asthma in the family predict the persistence and onset-age of asthma: a prospective cohort study. Respir Res 15:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Patil VK, Holloway JW, Zhang H, Soto-Ramirez N, Ewart S, Arshad SH et al (2013) Interaction of prenatal maternal smoking, interleukin 13 genetic variants and DNA methylation influencing airflow and airway reactivity. Clin Epigenetics 5(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawankar R (2014) Allergic diseases and asthma: a global public health concern and a call to action. World Allergy Organ J 7(1):12

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng C, Cardenas A, Rifas-Shiman SL, Hivert MF, Gold DR, Platts-Mills TA et al (2018) Epigenome-wide association study of total serum immunoglobulin E in children: a life course approach. Clin Epigenetics 10:55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4(2):e4488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perry MM, Lavender P, Kuo CS, Galea F, Michaeloudes C, Flanagan JM et al (2018) DNA methylation modules in airway smooth muscle are associated with asthma severity. Eur Respir J 51(4):1701068

    Article  PubMed  CAS  Google Scholar 

  • Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK et al (2018) Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics 10:2

    Google Scholar 

  • Raedler D, Ballenberger N, Klucker E, Bock A, Otto R, Prazeres da Costa O et al (2015) Identification of novel immune phenotypes for allergic and nonallergic childhood asthma. J Allergy Clin Immunol 135(1):81–91

    Article  CAS  PubMed  Google Scholar 

  • Rastogi D, Suzuki M, Greally JM (2013) Differential epigenome-wide DNA methylation patterns in childhood obesity-associated asthma. Sci Rep 3:2164

    Article  PubMed  PubMed Central  Google Scholar 

  • Raundhal M, Morse C, Khare A, Oriss TB, Milosevic J, Trudeau J et al (2015) High IFN-gamma and low SLPI mark severe asthma in mice and humans. J Clin Invest 125(8):3037–3050

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadeghnejad A, Karmaus W, Arshad SH, Kurukulaaratchy R, Huebner M, Ewart S (2008) IL13 gene polymorphisms modify the effect of exposure to tobacco smoke on persistent wheeze and asthma in childhood, a longitudinal study. Respir Res 9:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salam MT, Byun HM, Lurmann F, Breton CV, Wang X, Eckel SP et al (2012) Genetic and epigenetic variations in inducible nitric oxide synthase promoter, particulate pollution, and exhaled nitric oxide levels in children. J Allergy Clin Immunol 129(1):232–239.e231–237

    Article  CAS  Google Scholar 

  • Sastre B, Canas JA, Rodrigo-Munoz JM, Del Pozo V (2017) Novel modulators of asthma and allergy: exosomes and MicroRNAs. Front Immunol 8:826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayols-Baixeras S, Subirana I, Fernandez-Sanles A, Senti M, Lluis-Ganella C, Marrugat J et al (2017) DNA methylation and obesity traits: an epigenome-wide association study. The REGICOR study. Epigenetics 12(10):909–916

    Article  PubMed  PubMed Central  Google Scholar 

  • Seumois G, Chavez L, Gerasimova A, Lienhard M, Omran N, Kalinke L et al (2014) Epigenomic analysis of primary human T cells reveals enhancers associated with TH2 memory cell differentiation and asthma susceptibility. Nat Immunol 15(8):777–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 39(4):650–657

    Article  CAS  Google Scholar 

  • Stefanowicz D, Lee JY, Lee K, Shaheen F, Koo HK, Booth S et al (2015) Elevated H3K18 acetylation in airway epithelial cells of asthmatic subjects. Respir Res 16:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stein MM, Hrusch CL, Gozdz J, Igartua C, Pivniouk V, Murray SE et al (2016) Innate immunity and asthma risk in amish and hutterite farm children. N Engl J Med 375(5):411–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita A, Ogawa H, Azuma M, Muto S, Honjo A, Yanagawa H et al (2009) Antiallergic and anti-inflammatory effects of a novel IκB kinase β inhibitor, IMD-0354, in a mouse model of allergic inflammation. Int Arch Allergy Immunol 148(3):186–198

    Article  CAS  PubMed  Google Scholar 

  • Sutherland ER (2014) Linking obesity and asthma. Ann N Y Acad Sci 1311:31–41

    Article  CAS  PubMed  Google Scholar 

  • Tan L, Ou J, Tao Z, Kong Y, Xu Y (2017) Neonatal immune state is influenced by maternal allergic rhinitis and associated with regulatory T cells. Allergy Asthma Immunol Res 9(2):133–141

    Article  PubMed  Google Scholar 

  • Tsukagoshi H, Sakamoto T, Xu W, Barnes PJ, Chung KF (1994) Effect of interleukin-1 beta on airway hyperresponsiveness and inflammation in sensitized and nonsensitized Brown-Norway rats. J Allergy Clin Immunol 93(2):464–469

    Article  CAS  PubMed  Google Scholar 

  • Upham JW, Stumbles PA (2003) Why are dendritic cells important in allergic diseases of the respiratory tract? Pharmacol Ther 100(1):75–87

    Article  CAS  Google Scholar 

  • van der Valk RJ, Duijts L, Timpson NJ, Salam MT, Standl M, Curtin JA et al (2014) Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. J Allergy Clin Immunol 134(1):46–55

    Google Scholar 

  • Van Eerdewegh P, Little RD, Dupuis J, Del Mastro RG, Falls K, Simon J et al (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418(6896):426–430

    Article  PubMed  CAS  Google Scholar 

  • van Rijt L, von Richthofen H, van Ree R (2016) Type 2 innate lymphoid cells: at the cross-roads in allergic asthma. Semin Immunopathol 38(4):483–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ventura I, Vega A, Chamorro C, Aroca R, Gomez E, Pineda F et al (2014) Allergen immunotherapy decreases LPS-induced NF-κB activation in neutrophils from allergic patients. Pediatr Allergy Immunol 25(2):129–135

    Article  PubMed  Google Scholar 

  • Vicente CT, Revez JA, Ferreira MAR (2017) Lessons from ten years of genome-wide association studies of asthma. Clin Transl Immunology 6(12):e165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wallace DV, Dykewicz MS, Bernstein DI, Blessing-Moore J, Cox L, Khan DA et al (2008) The diagnosis and management of rhinitis: an updated practice parameter. J Allergy Clin Immunol 122(2 Suppl):S1–S84

    Article  PubMed  Google Scholar 

  • Wills-Karp M (2004) Interleukin-13 in asthma pathogenesis. Immunol Rev 202:175–190

    Article  CAS  PubMed  Google Scholar 

  • Xu CJ, Soderhall C, Bustamante M, Baiz N, Gruzieva O, Gehring U et al (2018) DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med 6(5):379–388

    Google Scholar 

  • Yang IV, Schwartz DA (2012) Epigenetic mechanisms and the development of asthma. J Allergy Clin Immunol 130(6):1243–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wicks J, Haitchi HM, Powell RM, Manuyakorn W, Howarth PH et al (2012) Regulation of a disintegrin and metalloprotease-33 expression by transforming growth factor-β. Am J Respir Cell Mol Biol 46(5):633–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang IV, Pedersen BS, Liu AH, O’Connor GT, Pillai D, Kattan M et al (2017) The nasal methylome and childhood atopic asthma. J Allergy Clin Immunol 139(5):1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Wang L, Chen B, Zhuo Q, Bao C, Lin L (2017a) Propofol inhibits NF-κB activation to ameliorate airway inflammation in ovalbumin (OVA)-induced allergic asthma mice. Int Immunopharmacol 51:158–164

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Salam MT, Berhane K, Eckel SP, Rappaport EB, Linn WS et al (2017b) Genetic and epigenetic susceptibility of airway inflammation to PM2.5 in school children: new insights from quantile regression. Environ Health 16(1):88

    Google Scholar 

  • Zheng B, Xi Z, Liu R, Yin W, Sui Z, Ren B et al (2018) The function of MicroRNAs in B-cell development, lymphoma, and their potential in clinical practice. Front Immunol 9:936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kari C. Nadeau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Long, A., Bunning, B., Sampath, V., DeKruyff, R.H., Nadeau, K.C. (2020). Epigenetics and the Environment in Airway Disease: Asthma and Allergic Rhinitis. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_6

Download citation

Publish with us

Policies and ethics