Skip to main content

The Epigenetics of Food Allergy

  • Chapter
  • First Online:
Epigenetics in Allergy and Autoimmunity

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1253))

Abstract

Food allergy is a global health problem, particularly in developed countries. It is mainly mediated by Th2 cell and IgE produced by B cells. While the pathogenesis of IgE-mediated food allergy is quite straightforward, the factors that lead to the development of food allergies at any age in children and adults are unclear. Recent studies have revealed that genetics, epigenetics, and environmental exposures contribute to the development of atopy. In this chapter, we discuss the interplay between these three key elements, reveal how epigenetic modifications may mediate genetic susceptibility of food allergies, and explain why epigenetic modifications may be the key in environmental factors mediated-gene expression, leading to the loss of immune tolerance and eventually, the initiation of food allergies. It should be noted that the study of the role of epigenetics in food allergy is still in its infancy, and lags behind research on epigenetics in other fields such as cancer and autoimmune diseases. One of the reasons for this may be the extreme complexity and variability of clinical presentation of food allergy, ranging from less severe forms such as oral allergy syndrome to full-blown anaphylaxis. Research on early exposure has disrupted the previous thinking of avoidance of food allergies to prevent sensitization in children, instead leading to recommendations that early introduction to foods may, in fact, induce tolerance. However, clear and unequivocal guidelines on how to approach this in the clinical setting have not been developed. The coming of the epigenetic era in food allergies is to provide better understanding of pathogenesis of food allergy, as well as providing therapeutic and preventive strategies for this very common condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsson TR, Jakobsson HE, Andersson AF, Bjorksten B, Engstrand L, Jenmalm MC (2012) Low diversity of the gut microbiota in infants with atopic eczema. J Allergy Clin Immunol 129(2):434–440, 440.e1–2

    Article  Google Scholar 

  • Andraos C, Koorsen G, Knight JC, Bornman L (2011) Vitamin D receptor gene methylation is associated with ethnicity, tuberculosis, and TaqI polymorphism. Hum Immunol 72(3):262–268

    Article  CAS  PubMed  Google Scholar 

  • Asai Y, Greenwood C, Hull PR, Alizadehfar R, Ben-Shoshan M, Brown SJ et al (2013) Filaggrin gene mutation associations with peanut allergy persist despite variations in peanut allergy diagnostic criteria or asthma status. J Allergy Clin Immunol 132(1):239–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H et al (2013) Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500(7461):232–236

    Article  CAS  PubMed  Google Scholar 

  • Berin MC, Mayer L (2013) Can we produce true tolerance in patients with food allergy? J Allergy Clin Immunol 131(1):14–22

    Article  CAS  PubMed  Google Scholar 

  • Brough HA, Cousins DJ, Munteanu A, Wong YF, Sudra A, Makinson K et al (2014a) IL-9 is a key component of memory TH cell peanut-specific responses from children with peanut allergy. J Allergy Clin Immunol 134(6):1329–1338.e10

    Article  PubMed  CAS  Google Scholar 

  • Brough HA, Simpson A, Makinson K, Hankinson J, Brown S, Douiri A et al (2014b) Peanut allergy: effect of environmental peanut exposure in children with filaggrin loss-of-function mutations. J Allergy Clin Immunol 134(4):867–875.e1

    Article  PubMed  Google Scholar 

  • Cahenzli J, Koller Y, Wyss M, Geuking MB, McCoy KD (2013) Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14(5):559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter CA, Frischmeyer-Guerrerio PA (2018) The genetics of food allergy. Curr Allergy Asthma Rep 18(1):2

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Lee JB, Liu B, Ohta S, Wang PY, Kartashov AV et al (2015) Induction of interleukin-9-producing mucosal mast cells promotes susceptibility to IgE-mediated experimental food allergy. Immunity 43(4):788–802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chokshi NY, Sicherer SH (2016) Interpreting IgE sensitization tests in food allergy. Expert Rev Clin Immunol 12(4):389–403

    Article  CAS  PubMed  Google Scholar 

  • Du Toit G, Katz Y, Sasieni P, Mesher D, Maleki SJ, Fisher HR et al (2008) Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol 122(5):984–991

    Article  PubMed  CAS  Google Scholar 

  • Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI (2014) Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci Transl Med 6(220):220ra11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujimura KE, Johnson CC, Ownby DR, Cox MJ, Brodie EL, Havstad SL et al (2010) Man’s best friend? The effect of pet ownership on house dust microbial communities. J Allergy Clin Immunol 126(2):410–412, 412.e1–3

    Article  Google Scholar 

  • Fujimura KE, Demoor T, Rauch M, Faruqi AA, Jang S, Johnson CC et al (2014) House dust exposure mediates gut microbiome Lactobacillus enrichment and airway immune defense against allergens and virus infection. Proc Natl Acad Sci USA 111(2):805–810

    Article  CAS  PubMed  Google Scholar 

  • Gosalbes MJ, Llop S, Valles Y, Moya A, Ballester F, Francino MP (2013) Meconium microbiota types dominated by lactic acid or enteric bacteria are differentially associated with maternal eczema and respiratory problems in infants. Clin Exp Allergy 43(2):198–211

    Article  CAS  PubMed  Google Scholar 

  • Gupta RS, Walkner MM, Greenhawt M, Lau CH, Caruso D, Wang X et al (2016) Food allergy sensitization and presentation in siblings of food allergic children. J Allergy Clin Immunol Pract. 4(5):956–962

    Article  PubMed  PubMed Central  Google Scholar 

  • Hemler JA, Phillips EJ, Mallal SA, Kendall PL (2015) The evolving story of human leukocyte antigen and the immunogenetics of peanut allergy. Ann Allergy Asthma Immunol 115(6):471–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota T, Nakayama T, Sato S, Yanagida N, Matsui T, Sugiura S et al (2017) Association study of childhood food allergy with genome-wide association studies-discovered loci of atopic dermatitis and eosinophilic esophagitis. J Allergy Clin Immunol 140(6):1713–1716

    Article  PubMed  Google Scholar 

  • Hong X, Hao K, Ladd-Acosta C, Hansen KD, Tsai HJ, Liu X et al (2015) Genome-wide association study identifies peanut allergy-specific loci and evidence of epigenetic mediation in US children. Nat Commun 6:6304

    Article  CAS  PubMed  Google Scholar 

  • Hua X, Goedert JJ, Pu A, Yu G, Shi J (2016) Allergy associations with the adult fecal microbiota: analysis of the American Gut Project. EBioMedicine 3:172–179

    Article  PubMed  Google Scholar 

  • Johansson EK, Bergstrom A, Kull I, Lind T, Soderhall C, van Hage M et al (2017) IgE sensitization in relation to preschool eczema and filaggrin mutation. J Allergy Clin Immunol 140(6):1572–1579.e5

    Article  PubMed  CAS  Google Scholar 

  • Katz Y, Rajuan N, Goldberg MR, Eisenberg E, Heyman E, Cohen A et al (2010) Early exposure to cow’s milk protein is protective against IgE-mediated cow’s milk protein allergy. J Allergy Clin Immunol 126(1):77–82.e1

    Article  PubMed  CAS  Google Scholar 

  • Klemans RJ, van Os-Medendorp H, Blankestijn M, Bruijnzeel-Koomen CA, Knol EF, Knulst AC (2015) Diagnostic accuracy of specific IgE to components in diagnosing peanut allergy: a systematic review. Clin Exp Allergy 45(4):720–730

    Article  CAS  PubMed  Google Scholar 

  • Koplin JJ, Osborne NJ, Wake M, Martin PE, Gurrin LC, Robinson MN et al (2010) Can early introduction of egg prevent egg allergy in infants? A population-based study. J Allergy Clin Immunol 126(4):807–813

    Article  PubMed  Google Scholar 

  • Koplin JJ, Allen KJ, Gurrin LC, Peters RL, Lowe AJ, Tang ML et al (2013) The impact of family history of allergy on risk of food allergy: a population-based study of infants. Int J Environ Res Public Health. 10(11):5364–5377

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Dwivedi PD, Das M, Tripathi A (2013) Macrophages in food allergy: an enigma. Mol Immunol 56(4):612–618

    Article  CAS  PubMed  Google Scholar 

  • Li J, Maggadottir SM, Hakonarson H (2016) Are genetic tests informative in predicting food allergy? Curr Opin Allergy Clin Immunol 16(3):257–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Z, Li Z, Liu X, Cheng Y, Luo Y, Tong X et al (2014) Altered fecal microbiota composition associated with food allergy in infants. Appl Environ Microbiol 80(8):2546–2554

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu X, Zhang S, Tsai HJ, Hong X, Wang B, Fang Y et al (2009) Genetic and environmental contributions to allergen sensitization in a Chinese twin study. Clin Exp Allergy 39(7):991–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martino D, Joo JE, Sexton-Oates A, Dang T, Allen K, Saffery R et al (2014) Epigenome-wide association study reveals longitudinally stable DNA methylation differences in CD4+ T cells from children with IgE-mediated food allergy. Epigenetics 9(7):998–1006

    Article  PubMed  PubMed Central  Google Scholar 

  • Martino D, Dang T, Sexton-Oates A, Prescott S, Tang ML, Dharmage S et al (2015) Blood DNA methylation biomarkers predict clinical reactivity in food-sensitized infants. J Allergy Clin Immunol 135(5):1319–1328.e1–12

    Article  CAS  Google Scholar 

  • Martino D, Neeland M, Dang T, Cobb J, Ellis J, Barnett A et al (2018) Epigenetic dysregulation of naive CD4+ T-cell activation genes in childhood food allergy. Nat Commun 9(1):3308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moles L, Gomez M, Heilig H, Bustos G, Fuentes S, de Vos W et al (2013) Bacterial diversity in meconium of preterm neonates and evolution of their fecal microbiota during the first month of life. PLoS One 8(6):e66986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noval Rivas M, Burton OT, Wise P, Charbonnier LM, Georgiev P, Oettgen HC et al (2015) Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42(3):512–523

    Article  CAS  PubMed  Google Scholar 

  • Palomares O (2013) The role of regulatory T cells in IgE-mediated food allergy. J Investig Allergol Clin Immunol 23(6):371–382; quiz 2 p preceding 82

    Google Scholar 

  • Payne S, Quigley MA (2017) Breastfeeding and infant hospitalisation: analysis of the UK 2010 infant feeding survey. Matern Child Nutr 13(1)

    Google Scholar 

  • Perkin MR, Logan K, Tseng A, Raji B, Ayis S, Peacock J et al (2016) Randomized trial of introduction of allergenic foods in breast-fed infants. N Engl J Med 374(18):1733–1743

    Article  CAS  PubMed  Google Scholar 

  • Prussin C, Lee J, Foster B (2009) Eosinophilic gastrointestinal disease and peanut allergy are alternatively associated with IL-5+ and IL-5(-) T(H)2 responses. J Allergy Clin Immunol 124(6):1326–1332.e6

    Article  CAS  Google Scholar 

  • Quake C, Nadeau KC (2015) The role of epigenetic mediation and the future of food allergy research. Semin Cell Dev Biol 43:125–130

    Article  CAS  PubMed  Google Scholar 

  • Ruiter B, Shreffler WG (2012) The role of dendritic cells in food allergy. J Allergy Clin Immunol 129(4):921–928

    Article  CAS  PubMed  Google Scholar 

  • Sicherer SH, Sampson HA (2018) Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 141(1):41–58

    Article  CAS  PubMed  Google Scholar 

  • Sicherer SH, Furlong TJ, Maes HH, Desnick RJ, Sampson HA, Gelb BD (2000) Genetics of peanut allergy: a twin study. J Allergy Clin Immunol 106(1 Pt 1):53–56

    Article  CAS  PubMed  Google Scholar 

  • Syed A, Kohli A, Nadeau KC (2013) Food allergy diagnosis and therapy: where are we now? Immunotherapy 5(9):931–944

    Article  CAS  PubMed  Google Scholar 

  • Syed A, Garcia MA, Lyu SC, Bucayu R, Kohli A, Ishida S et al (2014) Peanut oral immunotherapy results in increased antigen-induced regulatory T-cell function and hypomethylation of forkhead box protein 3 (FOXP3). J Allergy Clin Immunol 133(2):500–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuano KS, Orange JS, Sullivan K, Cunningham-Rundles C, Bonilla FA, Davis CM (2015) Food allergy in patients with primary immunodeficiency diseases: prevalence within the US Immunodeficiency Network (USIDNET). J Allergy Clin Immunol 135(1):273–275

    Article  PubMed  Google Scholar 

  • van Ginkel CD, Flokstra-de Blok BM, Kollen BJ, Kukler J, Koppelman GH, Dubois AE (2015) Loss-of-function variants of the filaggrin gene are associated with clinical reactivity to foods. Allergy 70(4):461–464

    Article  PubMed  CAS  Google Scholar 

  • Venkataraman D, Soto-Ramirez N, Kurukulaaratchy RJ, Holloway JW, Karmaus W, Ewart SL et al (2014) Filaggrin loss-of-function mutations are associated with food allergy in childhood and adolescence. J Allergy Clin Immunol 134(4):876–882.e4

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang IV, Davidson EJ, Joetham A, Takeda K, O’Connor BP et al (2018) Forkhead box protein 3 demethylation is associated with tolerance induction in peanut-induced intestinal allergy. J Allergy Clin Immunol 141(2):659–670.e2

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, C., Wu, H., Lu, Q. (2020). The Epigenetics of Food Allergy. In: Chang, C., Lu, Q. (eds) Epigenetics in Allergy and Autoimmunity. Advances in Experimental Medicine and Biology, vol 1253. Springer, Singapore. https://doi.org/10.1007/978-981-15-3449-2_5

Download citation

Publish with us

Policies and ethics