Skip to main content

Biotechnology to Restoration and Conservation

  • Chapter
  • First Online:
Microbial Biotechnology Approaches to Monuments of Cultural Heritage

Abstract

Biotechnology is a broad area of biology that involves the technological application of living cells, organisms and systems to make or develop products. It exploits cellular and bimolecular processes to innovate technologies and products that improve the standard of living and the planet’s health. Biotechnology has been essential in the betterment of medicine, industry and agriculture. It has great potential for the conservation and preservation of cultural monuments. With a rapid increase in population and pollution, cultural monuments are now being degraded and eroded away at a rapid pace. Some have blackened, some have lost their shine and some are left ruined by acid rain. Mechanical methods such as washing have not proven to be a success in the conservation of these monuments. Recent work using biotechnology has proven to be a better alternative in the conservation and preservation of monuments. Biotechnology research in restoration work of cultural monuments develops in two directions, one which focuses on the development of accurate diagnostic techniques for the identification and characterization of bio-deteriogens and alterations and the other which focuses on the development of innovative restoration methods by the employment of new products. Bacteria that reduce sulphur were used for black crust of marble from the Cathedral of Florence. The Desulfovibrio desulfuricans bacteria have been used for the removal of black patina which contains large amounts of sulphates. Denitrifying bacteria, for example, Pseudomonas stutzeri, have been used for the removal of nitrate pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achal V, Mukerjee A, Sudhakara Reddy M (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Elsevier, Amsterdam

    Google Scholar 

  • Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera cathedral after six years from the treatment. Int Biodeterior Biodegrad 65(7):1004–1011

    CAS  Google Scholar 

  • Anderson S, Appanna VD, Huang J, Viswanatha T (1992) A novel role for calcite in calcium homeostasis. FEBS Lett 308:94–96

    CAS  PubMed  Google Scholar 

  • Antonioli P, Zappararoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453e2459

    Google Scholar 

  • Ascaso C, Wierzchos J, Souzaegipsy V, Delosrios A, Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeterior Biodegrad 49(1):1–12

    Google Scholar 

  • Atlas RM, Chowdhury AN, Gauri LK (1988) Microbial calcification of gypsum–rock and sulphated marble. Stud Conserv 33:149–153

    Google Scholar 

  • Baskar S, Baskar R, Mauclaire L, Mckenzie JA (2006) Microbially induced calcite precipitation in culture experiments: possible origin for Sahastradhara Caves, Dehradun, India. Curr Sci India 90:58–64

    CAS  Google Scholar 

  • Bellissima F, Bonini M, Giorgi R, Baglioni P, Barresi G, Mastromei G, Perito B (2014) Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut Res 21:13278–13286

    CAS  Google Scholar 

  • Bellucci R, Cremonesi P, Pignagnoli G (1999) A note on the use of enzymes in conservation. A preliminary report on the removal of aged acrylic resin coatings with Lipase. Stud Conserv 44:278–281

    CAS  Google Scholar 

  • Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Doménech-Carbó MT, Montes- Estellés RM (2010) Ensayos de Biolimpieza con Bacterias en Pinturas Murales. Arché 4e5:115e122

    Google Scholar 

  • Bosch-Roig P, Regidor-Ros J, Soriano P, Montes-Estelles R (2013) Biocleaning of animal glue on wall paintings by Pseudomonas stutzeri. Chimica Oggi/Chem Today Elsevier 31:50–53

    CAS  Google Scholar 

  • Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from limestone cave and from a loamy soil. Geomicrobiol J 20:85–98

    CAS  Google Scholar 

  • Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E et al (2007) Advantages of using microbial technology over traditional chimica technology in removal of black crust from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Casanoba Beviá I (2008) Limpieza de obra mural mediante el uso de bacterias. Master thesis, Polytechnic University of Valencia, Spain

    Google Scholar 

  • Castanier S, Le Métayer-levrel G, Orial G, Loubìere JF, Perthuisot JP (2000) Bacterial carbonatogenesis and applications to preservation and restoration of historic property. In: Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Plenum, New York, pp 201–216

    Google Scholar 

  • Castilhos-Fortes R et al (2002) Susceptibility of Nasutitermes ehrhardti (Isoptera: Termitidae) to Bacillus thuringiensis subspecies. Braz J Microbiol 33:219–222

    Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampallie RY, Hu Z (2008) Inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    CAS  PubMed  Google Scholar 

  • Codiţă I, Caplan DM, Drăgulescu EC, Lixandru BE, Coldea IL, Dragomirescu CC et al (2010) Antimicrobial activity of copper and silver nanofilms on nosocomial bacterial species. Roum Arch Microbiol Immunol 69:204–212

    PubMed  Google Scholar 

  • De Belie N, De Muynck W (2008) Crack repair in concrete using biodeposition. In: Concrete repair, rehabilitation and retrofitting II. CRC Press, The Netherlands, pp 309–310

    Google Scholar 

  • De Graef B, De Windt W, Dick J, Verstraete W, De Belie N (2005) Cleaning of concrete fouled by lichens with the aid of Thiobacilli. Mater Struct 38:875–882

    Google Scholar 

  • De Muynck W, Debrouwer D, De Belie N (2008) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38:1005–1014

    Google Scholar 

  • De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36:118–136

    Google Scholar 

  • De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77(19):6808–6820

    PubMed  PubMed Central  Google Scholar 

  • De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347

    PubMed  Google Scholar 

  • Dick J, De Windt W, De Graef B, Saveyn H, Van Der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17:357–367

    CAS  PubMed  Google Scholar 

  • Doménech-Carbó MT, Yusá-Marco DJ (2006) Aspectos físicoquímicos de la pintura mural y su limpieza. Polytechnic University of Valencia, Valencia

    Google Scholar 

  • Farooq M (2015) Mycobial deterioration of stone monuments of dharmarajika, taxila. J Microbiol Exp 2(1):29–33

    Google Scholar 

  • Gauri KL, Bandyopadhyay JK (1999) Carbonate stone, chemical behaviour, durability, and conservation. Wiley, Chichester/New York

    Google Scholar 

  • Gauri KL, Chowdhury Ahad N, Kulshreshtha Niraj P, Punur Adinarayana R (1989) The sulfation of marble and the treatment of gypsum crusts. Stud Conserv 34:201–206

    Google Scholar 

  • Gauri KL et al (1992) Removal of sulfated-crust from marble using sulfate reducing bacteria. In: Webster RGM (ed) Stonecleaning and the nature, soiling and decay mechanisms of stone. Donhead, London, pp 160–165

    Google Scholar 

  • Goffredo GB, Citterio B, Biavasco F, Stazi F, Barcelli S, Munafò P (2017) Nanotechnology on wood: the effect of photocatalytic nanocoatings against Aspergillus niger. J Cult Herit 14:1–12. in press

    Google Scholar 

  • Gollapudi UK, Knutson CL, Bang SS, Islam MR (1995) A new method for controlling leaching through permeable channels. Chemosphere 30(4):695–705

    CAS  Google Scholar 

  • Haase A, Rott S, Mantion A, Graf P, Plendl J, Thünemann AF et al (2012) Effects of silver nanoparticles on primary mixed neural cell cultures: uptake, oxidative stress and acute calcium responses. Toxicol Sci 126:457–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn K, Klabunde KJ (2010) A multifunctional biocide/sporocide and photocatalyst based on titanium dioxide (TiO2) codoped with silver, carbon, and sulphur. Langmuir 26:2805–2810

    CAS  PubMed  Google Scholar 

  • Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7

    CAS  Google Scholar 

  • Heselmeyer K, Fischer U, Krumbein WE, Warsheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. BIOforum 1:89

    Google Scholar 

  • Jeong SH, Lee HJ, Kim DW, Chung YJ (2018) New biocide for eco-friendly biofilm removal on outdoor stone monuments. Int Biodeterior Biodegrad 131:19–28

    CAS  Google Scholar 

  • Kartal SN, Green F, Clausen CA (2009) Do the unique properties of nanometals affect leachability or efficacy against fungi and termites. Int Biodeterior Biodegrad 63:490–495

    CAS  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2006) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Google Scholar 

  • Koestler RJ (2000) When bad things happen to good art. Int Biodeterior Biodegrad 46:259–269

    Google Scholar 

  • Konkol N, Macnamara C (2009) Enzymatic decoloration of bacterial pigmented from culturally significant marble. J Cult Herit 10:362–366

    Google Scholar 

  • Konkol N, McNamara C, Sembrat J, Rabinowitz M, Mitchell R (2009) Enzymatic decolorization of bacterial pigments from culturally significant marble. J Cult Herit 10:362–366

    Google Scholar 

  • Le Métayer-Levrel G, Castanier S, Orial G, Loubière J-F, Perthuisot J-P (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1-4):25–34

    Google Scholar 

  • Lee YN (2003) Calcite production by Bacillus amyloliquefaciens CMB01. J Microbiol 41:345–348

    CAS  Google Scholar 

  • Lee HY, Park HK, Lee YM, Park SB (2007) A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem Commun 28:2959–2961

    Google Scholar 

  • Li M, Noriega-Trevino ME, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R et al (2011) Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environ Sci Technol 45:8989–8995

    CAS  PubMed  Google Scholar 

  • Makes F (1982) Enzymatic consolidation of a painting: seventeenth century landscape from Skokloster Palace. In: Contribution of the Washington congress, IIC, London, 25–30 October

    Google Scholar 

  • Makes F (1988) Enzymatic consolidation of the portrait of Rudolf II with a multi-enzyme preparation isolated from Antartic krill, Goteborg studies on conservation 1. Acta Universitatis Gothoburgensis, Göteborg

    Google Scholar 

  • Masaphy S, Zabari L, Pastrana J, Dultz S (2009) Role of fungal mycelium in the formation of carbonate concretions in growing media—an investigation by SEM and synchrotron-based X-ray tomographic microscopy. Geomicrobiol J 26:442–450

    CAS  Google Scholar 

  • McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moncrieff A, Hempel K (1977) Conservation of sculptural stonework: virgin & child on S. Maria dei Miracoli and the Loggetta of the campanile, Venice. Stud Conserv 22:1–11

    CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ et al (2008) Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    CAS  PubMed  Google Scholar 

  • Orial G, Castanier S, Le Metayer G, Loubière JF (1993) The biomineralization: a new process to protect calcareous stone applied to historic monuments. In: Ktoishi H, Arai T, Yamano K (eds) Proceedings of the 2nd international conference of biodeterioration of cultural property. International Communications Specialists, Tokyo, pp 98–116

    Google Scholar 

  • Peraza Zurita Y (2004) Biodeterioro por microalgas en fuentes de mármol. Universidad de Granadas, Ph.D. thesis

    Google Scholar 

  • Pietrzak K, Gutarowska B, Machnowski W, MikoÅ‚ajczyk U (2015a) Antimicrobial properties of silver nanoparticles misting on cotton fabrics. Text Res J 86:812–822

    Google Scholar 

  • Pietrzak K, Twarużek M, Czyżowska A, Kosicki R, Gutarowska B (2015b) Influence of silver nanoparticles on metabolism and toxicity of moulds. Acta Biochim Pol 62:851–857. pmid:26637374

    CAS  PubMed  Google Scholar 

  • Polanczyk R, Alves S (2003) Bacillus thuringiensis: uma breve revisão. Agrociencia 7:1–10

    Google Scholar 

  • Ramírez JL, Santana MA, Galindo-Castro I, Gonzalez A (2006) The role of biotechnology in art preservation. Trends Biotechnol 23:584–588

    Google Scholar 

  • Ranalli G, Sorlini C (2003) Application of microorganisms for the deteriorates surfaces recovery. Coalition 6:2e4

    Google Scholar 

  • Ranalli G, Sorlini C (2008) Bioremediation. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage, Biodeterioration and conservation. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E et al (1997) The use of microorganisms for the removal of sulphates on artistic stoneworks. Int Biodeterior Biodegrad 40:255–261

    CAS  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation on cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Kluwer Academic-Plenum, New York, p 231e245

    Google Scholar 

  • Ranalli G, Alfano G, Belli C, Lustrato G, Bonadduce I, Colombini MP, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73e83

    Google Scholar 

  • Rivadeneyra MA, Párraga J, Delgado R, Ramos-cormerzana A, Delgado G (2004) Biomineralization of carbonates by Halobacillus trueperi in solid and liquid media with different salinities. FEMS Microbiol Ecol 48:39–46

    CAS  PubMed  Google Scholar 

  • Rivadeneyra MA, Delgado R, Párraga J, Ramos-cormenza A (2006) Precipitation of minerals by 22 species of moderately halophilic bacteria in artificial marine salts media: influence of salt concentration. Folia Microbiol 51:445–453

    CAS  Google Scholar 

  • Rodriguez-navarro C, Rodriguez-gallego M, Chekroun KB, Gonzalez-muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, Gonzalez-Muñoz MT, Rodriguez-Gallego M (2007) Bacterially mediated mineralization of vaterite. Geochim Cosmochim Acta 71(5):1197–1213

    CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716. pmid:18248860

    CAS  PubMed  Google Scholar 

  • Sabbioni C et al (2003) Organic anions in damage layers on monuments and buildings. Atmos Environ 37:1261–1269

    CAS  Google Scholar 

  • Saiz-jimenez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeterior Biodegrad 40:225–232

    CAS  Google Scholar 

  • Sarda D, Choonia HS, Sarode DD, Lele SS (2009) Biocalcification by Bacillus pasteurii urease: a novel application. J Ind Microbiol Biotechnol 36:1111–1115

    CAS  PubMed  Google Scholar 

  • Schiavon N et al (2004) Soiling of limestone in an urban environment characterized by heavy vehicular exhaust emissions. Environ Geol 46:448–455

    CAS  Google Scholar 

  • Segal J, Cooper D (1977) The use of enzymes to release adhesives. Pap Conserv 2:47–50

    Google Scholar 

  • Shirakawa MA, Gaylarde CC, Sahão HD, Lima JRB (2013) Inhibition of Cladosporium growth on gypsum panels treated with nanosilver particles. Int Biodeterior Biodegrad 85:57–61

    CAS  Google Scholar 

  • Skoulikidis TN, Beloyannis N (1984) Inversion of marble sulfation: reconversion of gypsum films into calcite on the surfaces of monuments and statues. Stud Conserv 29:197–204

    CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182

    CAS  PubMed  Google Scholar 

  • Sprocati AR, Alisi C, Tasso F (2008) A microbial survey of the Etruscan Mercareccia Tomb (Italy): contribution of microorganisms to deterioration and restoration. In: 9th international conference on NDT of Art, Jerusalem, Israel

    Google Scholar 

  • Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55

    Google Scholar 

  • Stocks-Fischer S, Galinat JK, Bang SS (1999) Microbiological precipitation of CaCO3. Soil Biol Biochem 31(11):1563–1571

    CAS  Google Scholar 

  • Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods Elsevier 36:139–145

    CAS  Google Scholar 

  • Vass IZ, Deák Z, Paul K, Kovács S, Vass I (2015) Interaction of nanoparticles with biological systems. Acta Biol Szeged 59:225–245

    Google Scholar 

  • Vokic D, Berovic M (2005) Use of lipase to remove oil-base overpaints. ICOM- 13th Triennal meeting, 12–16 September

    Google Scholar 

  • Walston S (1978) The preservation and conservation of aboriginal and Pacific cultural material in Australian museums. ICCM Bull 4(4):9–21

    Google Scholar 

  • Wendelbo O, Fosse B (1970) Protein surgery: a restoring procedure applied on paper. Restaurator 1:245–248

    Google Scholar 

  • Zamarreño DV, May E, Robert I (2009) Influence of environmental temperature on biocalcification by non-sporing freshwater bacteria. Geomicrobiol J 26:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Tiwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, L., Kapoor, N., Tiwari, A. (2020). Biotechnology to Restoration and Conservation. In: Yadav, A., Rastegari, A., Gupta, V., Yadav, N. (eds) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-15-3401-0_9

Download citation

Publish with us

Policies and ethics