Skip to main content

Microbiological Tools for Cultural Heritage Conservation

  • Chapter
  • First Online:
Microbial Biotechnology Approaches to Monuments of Cultural Heritage

Abstract

Culture and cultural heritage are the imprints of human civilization and architectural depiction of society and cultures. Antique documents and cultural heritages such as historic buildings, monuments, manuscripts and paintings are brittle and undergo physical, chemical and biological deterioration during the course of time. Escalating air pollution and global warming are the main cause of deterioration of stone monuments and artworks. The deterioration process can be restored by employing various microbiological tools such as biocleaning, biomineralization, biocementation and biofilm formation. This chapter summarizes eco-friendly microbiological approaches used to restore cultural heritages, archaeological sites and wall paintings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 09 August 2020

    The book was inadvertently published with an incorrect affiliation of the corresponding author Amrita Kumari Panda in Chapter 8 as Department of Microbiology, Gogate Jogalekar College, Ratnagiri, Maharashtra, India. The affiliation has now been corrected as Department of Biotechnology, Sant Gahira Guru University, Ambikapur, Chhattisgarh, India.

References

  • Adamo P, Violante P (2000) Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl Clay Sci 16:229–256

    CAS  Google Scholar 

  • Adeyemi AO, Gadd GM (2005) Fungal degradation of calcium-, lead- and silicon-bearing minerals. Biometals 18:269–281

    CAS  PubMed  Google Scholar 

  • Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E et al (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera cathedral after six years from the treatment. Int Biodeterior Biodegradation 65:1004–1011

    CAS  Google Scholar 

  • Allemand L, Bahn PG (2005) Best way to protect rock art is to leave it alone. Nature 433:800

    CAS  PubMed  Google Scholar 

  • Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459

    CAS  PubMed  Google Scholar 

  • Arya AA, Shah R, Sadasivan S (2001) Curr Sci 81:793–799

    Google Scholar 

  • Ausset P, Lefèvre RA, Del Monte M (2000) Early mechanisms of development of sulfated black crusts on carbonate stone, pp 329–337. In: Fassina V (ed) Proceedings of the 9th international congress on deterioration and conservation of stone, Venice, Italy. Elsevier Science, Amsterdam

    Google Scholar 

  • Berk SG, Mitchell R, Bobbie RJ, Nickels JS, White DC (2001) Int Biodeterior Biodegrad 48:167–175

    CAS  Google Scholar 

  • Bindschedler S, Cailleau G, Verrecchia E (2016) Role of fungi in the biomineralization of calcite. Fortschr Mineral 6:41

    Google Scholar 

  • Biswas J, Sharma K, Harris KK, Rajput Y (2013) Biodeterioration agents: bacterial and fungal diversity dwelling in or on the pre-historic rock-paints of Kabra-pahad, India. Iran J Microbiol 5:309

    PubMed  PubMed Central  Google Scholar 

  • Bjordal CG, Nilsson T, Daniel G (1999) Int Biodeterior Biodegradation 43:63–71

    Google Scholar 

  • Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155

    PubMed  PubMed Central  Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411

    CAS  Google Scholar 

  • Bugini R, Laurenzi Tabasso M, Realini M (2000) Rate of formation of black crusts on marble. A case study. J Cult Herit 1:111–116

    Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineral Mag 67:1127–1155

    CAS  Google Scholar 

  • Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L, Cord-Ruwisch R, Shahin MA (2013) Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation. Can Geotech J 50:81–90

    CAS  Google Scholar 

  • Comensoli L et al (2017) Use of bacteria to stabilize archaeological iron. Appl Environ Microbiol 83:e03478–e03416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Concha-Lozano N, Gaudon P, Pages J, de Billerbeck G, Lafon D, Eterradossi O (2012) Protective effect of endolithic fungal hyphae on oolitic limestone buildings. J Cult Herit 13:120–127

    Google Scholar 

  • Cote C, Rosas O, Basseguy R (2015) Geobacter sulfurreducens: an iron reducing bacterium that can protect carbon steel against corrosion? Corros Sci 94:104–113

    CAS  Google Scholar 

  • Crispim CA, Gaylarde CC (2005) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb Ecol 49:1–9

    CAS  PubMed  Google Scholar 

  • Cuzman OA, Ventura S, Sili C, Mascalchi C, Turchetti T, D’Acqui LP, Tiano P (2010) Biodiversity of phototrophic biofilms dwelling on monumental fountains. Microb Ecol 60:81–95

    CAS  PubMed  Google Scholar 

  • De Graef B, De Windt W, Dick J, Verstraete W, De Belie N (2005) Cleaning of concrete fouled by lichens with the aid of Thiobacilli. Mater Struct 38:875–882

    Google Scholar 

  • McIlroy de la Rosa JP, Warke PA, Smith BJ (2012) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37:325–351

    Google Scholar 

  • McIlroy de la Rosa JP, Warke PA, Smith BJ (2014) The effects of lichen cover upon the rate of solutional weathering of limestone. Geomorphology 220:81–92

    Google Scholar 

  • Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24(1):36

    Google Scholar 

  • Dhami NK, Reddy MS, Mukherjee A (2013) Biomineralization of calcium carbonates and their engineered applications: a review. Front Microbiol 4:314

    PubMed  PubMed Central  Google Scholar 

  • ErÅŸan YÇ, Belie N, Boon N (2015) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118

    Google Scholar 

  • Ettenauer J, Piñar G, Sterflinger K, Gonzalez-Muñoz MT, Jroundi F (2011) Molecular monitoring of the microbial dynamics occurring on historical limestone buildings during and after the in situ application of different bio-consolidation treatments. Sci Total Environ 409:5337–5352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Hassan M, Gull F (2015) Mycobial deterioration of stone monuments of Dharmarajika, Taxila. J Microbiol Exp 2:36

    Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291

    CAS  PubMed  Google Scholar 

  • Gadd GM (2004) Mycotransformation of organic and inorganic substrates. Mycologist 18:60–70

    Google Scholar 

  • Gadd GM (2017) Geomicrobiology of the built environment. Nat Microbiol 2:16275

    CAS  PubMed  Google Scholar 

  • Gadd GM, Dyer TD (2017) Bioprotection of the built environment and cultural heritage. Microb Biotechnol 10:1152–1156

    PubMed  PubMed Central  Google Scholar 

  • Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulfated-crusts from marble using sulphate-reducing bacteria. In: Webster RGM (ed) Proceedings of the international conference on stone cleaning and the nature, soiling and decay mechanisms of stone. Donheadd, Edinburgh, pp 160–165

    Google Scholar 

  • Gioventù E, Lorenzi P, Improta MC, Cappitelli F (2012) Bacterial cleaning technology for marble surfaces affected by black crust: comparison with chemical and laser treatments. 12th International Congress on the Deterioration and Conservation of Stone, Columbia University, New York

    Google Scholar 

  • Gómez-Alarcón G, Munoz ML (1995) Flores M excretion of organic acids by fungal strains isolated from decayed sandstone. Int Biodeterior Biodegrad 34:169–180

    Google Scholar 

  • Gu JD, Mitton DB, Ford TE, Mitchell R (1998) Biodegradation 9:39–45

    CAS  PubMed  Google Scholar 

  • Helmi FM, Elmitwalli HR, Elnagdy SM, El-Hagrassy AF (2016) Calcium carbonate precipitation induced by ureolytic bacteria Bacillus licheniformis. Ecol Eng 90:367–371

    Google Scholar 

  • Hueck-van der Plas EH (1965) The biodeterioration of materials as a part of hylobiology. Mater Org 1:5–34

    Google Scholar 

  • Jonkers H (2011) Bacteria-based self-healing concrete. Heron 56:1–12

    Google Scholar 

  • Joseph E, Cario S, Simon A, Wörle M, Mazzeo R, Junier P, Job D (2012) Protection of metal artifacts with the formation of metal–oxalates complexes by Beauveria bassiana. Front Microbiol 2:270

    PubMed  PubMed Central  Google Scholar 

  • Joseph E et al (2012a) Protection of metal artefacts with the formation of metal-oxalates complexes by Beauveria bassiana. Front Microbiol 2:270

    PubMed  PubMed Central  Google Scholar 

  • Joseph E, Simon A, Mazzeo R, Job D, W€orle M (2012b) Spectroscopic characterization of an innovative biological treatment for corroded metal artefacts. J Raman Spectrosc 43:1612–1616

    CAS  Google Scholar 

  • Jroundi F, Fernández-Vivas A, Rodriguez-Navarro C, Bedmar EJ, González-Muñoz MT (2010) Bioconservation of deteriorated monumental calcarenite stone and identification of bacteria with carbonatogenic activity. Microb Ecol 60:39–54

    CAS  PubMed  Google Scholar 

  • Jroundi F, Schiro M, Ruiz-Agudo E, Elert K, Martín-Sánchez I, González-Muñoz MT, Rodriguez-Navarro C (2017) Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities. Nat Commun 8:279

    PubMed  PubMed Central  Google Scholar 

  • Junier P, Joseph E (2017) Microbial biotechnology approaches to mitigating the deterioration of construction and heritage materials. Microb Biotechnol 10:1145–1148

    PubMed  PubMed Central  Google Scholar 

  • Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61

    CAS  Google Scholar 

  • O’Toole GA, Ghannoum MA (2004) Introduction to biofilms: conceptual themes. In Microbial Biofilms. American Society of Microbiology, pp 1–3

    Google Scholar 

  • Pinar G, Sterflinger K (2009) Microbes and building materials. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Science Publishers, New York, pp 163–188

    Google Scholar 

  • Polo A, Cappitelli F, Brusetti L, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60:1–14

    CAS  PubMed  Google Scholar 

  • Ranalli G, Chiavarini M, Guidetti E, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganism for the removal of sulphates on artistic stone works. Int Biodeterior Biodegrad 40:255–261

    CAS  Google Scholar 

  • Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. Springer, Boston

    Google Scholar 

  • Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83

    CAS  PubMed  Google Scholar 

  • Ranalli G et al (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126:1785–1796

    CAS  PubMed  Google Scholar 

  • Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G, Giantomassi C, Zari D, Virilli P (2019) Onsite advanced biocleaning system for historical wall paintings using new agar-gauze bacteriagel. J Appl Microbiol 126(6):1785–1796

    CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez Muñoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69:2182–2193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rolleke S, Witte A, Wanner G, Lubitz W (1998) Medieval wall painting-an habitat for Archaea: identification of Archaea by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified gene fragments coding 16S rRNA in a medieval painting. Int Biodeterior Biodegr 41:85–92

    CAS  Google Scholar 

  • Rubio RF, Bolivar FC (1997) Int Biodeterior Biodegradation 40:161–169

    Google Scholar 

  • Saiz-Jimenez C (1999) Geomicrobiol J 16:27–37

    CAS  Google Scholar 

  • Saiz-Jimenez C, Laiz L (2000) Int Biodeterior Biodegradation 46:319–326

    CAS  Google Scholar 

  • Sand W, Bock E (1991) Int Biodeterior Biodegradation 27:175–183

    CAS  Google Scholar 

  • Schabereiter-Gurtner C, Pinar G, Lubitz W, Rolleke S (2001) J Microbiol Methods 47:345–354

    CAS  PubMed  Google Scholar 

  • Seneviratne G, Indrasena IK (2006) Nitrogen fixation in lichens is important for improved rock weathering. J Biosci 31:639–643

    PubMed  Google Scholar 

  • Slavík M, Bruthans J, Filippi M, Schweigstillová J, Falteisek L, Jaroslav ŘihoÅ¡ek J (2017) Biologically-initiated rock crust on sandstone: mechanical and hydraulic properties and resistance to erosion. Geomorphology 278:298–313

    Google Scholar 

  • Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55

    Google Scholar 

  • Tomaselli L, Lamenti G, Bosco M, Tiano P (2000) Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int Biodeterior Biodegr 46(3):251–258

    Google Scholar 

  • Urzì C, Brusetti L, Salamone P, Sorlini C, Stachebrandt E, Doffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ Microbiol 3:471–479

    PubMed  Google Scholar 

  • Zhu T, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 82:459–468

    Google Scholar 

  • Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76:1245–1253

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panda, A.K., Mishra, R., Bisht, S.S. (2020). Microbiological Tools for Cultural Heritage Conservation. In: Yadav, A., Rastegari, A., Gupta, V., Yadav, N. (eds) Microbial Biotechnology Approaches to Monuments of Cultural Heritage. Springer, Singapore. https://doi.org/10.1007/978-981-15-3401-0_8

Download citation

Publish with us

Policies and ethics