Advertisement

The Role of Microorganisms in Removal of Sulfates from Artistic Stonework

  • Prem Chandra
  • Enespa
  • Rajesh Kumar
  • Jameel Ahmad
Chapter
  • 36 Downloads

Abstract

The presence of organic matter on artistic stonework can be credited to inadequate historical renovations, lysis of microbial cells, primary surface colonization, and manifestation of hydrocarbons from oil combustion. The conservation of the artwork itself can be seriously dangerous. To date, surfactants and solubilizing agents have been used to remove pollutants and residual substances from artwork by chemical and physical procedures. For biological removal of sulfates, nitrates, and organic matter present on artistic stonework, multiple bioremediation systems have now been developed, exploiting prudently selected microbial cultures grown on an appropriate support. The development of this process involves screening and selection of a suitable microbial culture with the capability to biodegrade organic matter, denitrify, and reduce sulfates; setting up of simulated laboratory tests with stone samples artificially enriched with nitrates, sulfates, and organic matter; testing of appropriate inert matrices on which to immobilize the selected bacterial strains; and testing of sulfate, nitrate, and organic matter removal from artificially enriched stone, as well as from naturally degraded artwork. Bacterial biofilms using sepiolite with a high active biomass per cm3 were developed. Pseudomonas aeruginosa and Pseudomonas stutzeri were selected for nitrate removal because of their high denitrifying activity. Desulfovibrio vulgaris and Desulfovibrio desulfuricans were selected and tested for sulfate removal in liquid cultures, on stone specimens artificially enriched with sulfates, and on real marble samples. The results confirmed the potential for development of bioremediation as a soft, innovative technology based on the use of microorganisms and their metabolic activity in recovery of degraded artworks.

Keywords

Bioremediation of artworks Desulfovibrio vulgaris Desulfovibrio desulfuricans Nitrates Sulfates Organic matter 

Notes

Acknowledgements

The authors are greatful to Prof. Jameel Ahmad, Principal, Gandhi Faiz-E-Aam College, Shahjahanpur, Uttar Pradesh for their suggestion and constant encouragement.

References

  1. Abola AP, Willits MG, Wang RC, Long SR (1999) Reduction of adenosine-5′-phosphosulfate instead of 3′-phosphoadenosine-5′-phosphosulfate in cysteine biosynthesis by Rhizobium meliloti and other members of the family Rhizobiaceae. J Bacteriol 181:5280–5287PubMedPubMedCentralGoogle Scholar
  2. Agostino V, Rosenbaum MA (2018) Sulfate-reducing electroautotrophs and their applications in bioelectrochemical systems. Front Energy Res 6:55Google Scholar
  3. Aherne M, Lyons JA, Caffrey M (2012) A fast, simple and robust protocol for growing crystals in the lipidic cubic phase. J Appl Crystallogr 45:1330–1333PubMedPubMedCentralGoogle Scholar
  4. Akagi JM (1995) Respiratory sulfate reduction. In: Sulfate-reducing bacteria. Springer, Boston, pp 89–111Google Scholar
  5. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Electron-transport chains and their proton pumps. Mol Biol Cell 91:401Google Scholar
  6. Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65:1004–1011Google Scholar
  7. Al-Thawadi SM (2011) Ureolytic bacteria and calcium carbonate formation as a mechanism of strength enhancement of sand. J Adv Sci Eng Res 1:98–114Google Scholar
  8. Anbu P, Kang CH, Shin YJ, So JS (2016) Formations of calcium carbonate minerals by bacteria and its multiple applications. Springer Plus 5:1–26Google Scholar
  9. Arendsen AF, Verhagen MF, Wolbert RB, Pierik AJ, Stams AJ, Jetten MS, Hagen WR (1993) The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron–sulfur clusters. Biochemist 32:10323–10330Google Scholar
  10. Atlas RM, Chowdhury AN, Gauri KL (1988) Microbial calcification of gypsum-rock and sulfated marble. Stud Conserv 33:149–153Google Scholar
  11. Ayangbenro AS, Olanrewaju OS, Babalola OO (2018) Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Front Microbiol 9:1–15Google Scholar
  12. Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49PubMedGoogle Scholar
  13. Baklanov A, Molina LT, Gauss M (2016) Megacities, air quality and climate. Atmos Environ 126:235–249Google Scholar
  14. Balakrishnan L, Venter H, Shilling RA, van Veen HW (2004) Reversible transport by the ATP-binding cassette multidrug export pump LMRA ATP synthesis at the expense of downhill ethidium uptake. J Biol Chem 279:11273–11280PubMedGoogle Scholar
  15. Balashova VV (1985) Use of molecular sulfur as an agent oxidizing H2 by a facultative anaerobic Pseudomonas strain. Mikrobiologiia 54:324–326PubMedGoogle Scholar
  16. Balci N, Brunner B, Turchyn AV (2017) Tetrathionate and elemental sulfur shape the isotope composition of sulfate in acid mine drainage. Front Microbiol 8:1564PubMedPubMedCentralGoogle Scholar
  17. Balloi A, Lombardi E, Troiano F, Polo A, Capitelli F, Gulotta D, Daffonchio D (2017) Sulfate reducing bacteria as bio-cleaning agents: development of new methodologies and study cases. Conserv Sci Cultural Herit 15:109–119Google Scholar
  18. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421PubMedGoogle Scholar
  19. Barrett EL, Clark MA (1987) Tetrathionate reduction and production of hydrogen sulfide from thiosulfate. Microbiol Rev 51:192PubMedPubMedCentralGoogle Scholar
  20. Barton LL, Hamilton WA (eds) (2007) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, New YorkGoogle Scholar
  21. Basen M, Krüger M, Milucka J, Kuever J, Kahnt J, Grundmann O, Shima S (2011) Bacterial enzymes for dissimilatory sulfate reduction in a marine microbial mat (Black Sea) mediating anaerobic oxidation of methane. Environ Microbiol 13:1370–1379PubMedGoogle Scholar
  22. Berg IA, Kockelkorn D, Ramos-Vera WH, Say RF, Zarzycki J, Hügler M, Fuchs G (2010) Autotrophic carbon fixation in archaea. Nat Rev Microbiol 8:447PubMedGoogle Scholar
  23. Bertran E, Leavitt WD, Pellerin A, Zane GM, Wall JD, Halevy I, Johnston DT (2018) Deconstructing the dissimilatory sulfate reduction pathway: isotope fractionation of a mutant unable of growth on sulfate. Front Microbiol 9:3110PubMedPubMedCentralGoogle Scholar
  24. Bhave DP, Hong JA, Lee M, Jiang W, Krebs C, Carroll KS (2011) Spectroscopic studies on the [4Fe–4S] cluster in adenosine 5′-phosphosulfate reductase from Mycobacterium tuberculosis. J Biol Chem 286:1216–1226PubMedGoogle Scholar
  25. Biondi V, Iraldo F, Meredith S (2002) Achieving sustainability through environmental innovation: the role of SMEs. Int J Technol Manag 24:612–626Google Scholar
  26. Bonazza A, Messina P, Sabbioni C, Grossi CM, Brimblecombe P (2009) Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci Total Environ 407:2039–2050PubMedGoogle Scholar
  27. Bonch-Osmolovskaya EA, Sokolova TG, Kostrikina NA, Zavarzin GA (1990) Desulfurella acetivorans gen. nov. and sp. nov. a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155Google Scholar
  28. Boon T (1993) Tumor antigens recognized by cytolytic T lymphocytes: present perspectives for specific immunotherapy. Int J Cancer 54:177–180PubMedGoogle Scholar
  29. Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155PubMedPubMedCentralGoogle Scholar
  30. Brady NC, Weil RR (1999) Nitrogen and sulfur economy of soils. Nat Prop Soil:491–523Google Scholar
  31. Brierley CL, Brierley JA (1982) Anaerobic reduction of molybdenum by Sulfolobus species. Zentralblatt für Bakteriologie Mikrobiologie und Hygiene: I. Abt. Originale C: Allgemeine, angewandte und ökologische Mikrobiologie 3:289–294Google Scholar
  32. Brock A, Raja PKS, Vise JB (1972) The palaeomagnetism of the Kisii Series, western Kenya. Geophys J Int 28:129–137Google Scholar
  33. Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169PubMedPubMedCentralGoogle Scholar
  34. Buckman HO, Brady NC (1960) The nature and properties of soils. Soil Sci 90:212Google Scholar
  35. Burggraf S, Fricke H, Neuner A, Kristjansson J, Rouvier P, Mandelco L, Stetter KO (1990a) Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13:263–269PubMedGoogle Scholar
  36. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990b) Archaeoglobus profundus sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst App. Microbiology 13:24–28Google Scholar
  37. Burini RC, Kano HT, Yu YM (2018) The life evolution on the sulfur cycle: from ancient elemental sulfur reduction and sulfide oxidation to the contemporary thiol-redox challenges. Glutathione in health and disease. Pinar Erkekoglu and Belma Kocer-Gumusel, IntechOpen, Hyattsville.  https://doi.org/10.5772/intechopen.76749
  38. Butlin KR, Adams ME, Thomas M (1949) The isolation and cultivation of sulphate-reducing bacteria. Microbiology 3:46–59Google Scholar
  39. Caccavo F Jr, Coates JD, Rossello-Mora RA, Ludwig W, Schleifer KH, Lovley DR, McInerne MJ (1996) Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376PubMedGoogle Scholar
  40. Cacchio P, Ercole C, Cappuccio G, Lepidi A (2003) Calcium carbonate precipitation by bacterial strains isolated from a limestone cave and from a loamy soil. Geomicrobiol J 20:85–98Google Scholar
  41. Caffrey C, Sengupta M, Park-Lee E et al (2012) Residents living in residential care facilities: United States, 2010. NCHS data brief, no. 91. National Center for Health Statistics, HyattsvilleGoogle Scholar
  42. Cai J, Jiang J, Zheng P (2010) Isolation and identification of bacteria responsible for simultaneous anaerobic ammonium and sulfate removal. Sci China Chem 53(3):645–650Google Scholar
  43. Campanini B, Pieroni M, Raboni S, Bettati S, Benoni R, Pecchini C, Mozzarelli A (2015) Inhibitors of the sulfur assimilation pathway in bacterial pathogens as enhancers of antibiotic therapy. Curr Med Chem 22:187–213PubMedGoogle Scholar
  44. Campbell LL, Postgate JR (1965) Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29:359PubMedPubMedCentralGoogle Scholar
  45. Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep Sea Research Part A. Oceanographic Res Papers 36:121–138Google Scholar
  46. Cappitelli F (2016) Biocleaning of cultural heritage surfaces. Open Conf Proc J 7 (suppl 1: M6):65–69Google Scholar
  47. Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bio removal of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737PubMedPubMedCentralGoogle Scholar
  48. Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Díaz E (2009) Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev 73:71–133PubMedPubMedCentralGoogle Scholar
  49. Caselli E, Pancaldi S, Baldisserotto C, Petrucci F, Impallaria A, Volpe L, Bevilacqua F (2018) Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS One 13:e0207630PubMedPubMedCentralGoogle Scholar
  50. Castanier S, Le Metayer-Levrel G, Perthuisot J P (2000) Bacterial roles in the precipitation of carbonate minerals. In: Microbial sediments. Springer, Berlin/Heidelberg, pp 32–39Google Scholar
  51. Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9PubMedGoogle Scholar
  52. Chafetz HS (1986) Marine peloids; a product of bacterially induced precipitation of calcite. J Sediment Res 56:812–817Google Scholar
  53. Chalasani AG, Dhanarajan G, Nema S, Sen R, Roy U (2015) An antimicrobial metabolite from Bacillus sp.: significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Front Microbiol 6:1335PubMedPubMedCentralGoogle Scholar
  54. Chapman SJ (1989) Oxidation of micronized elemental sulphur in soil. Plant Soil 116:69–76Google Scholar
  55. Chartron J, Shiau C, Stout CD, Carroll KS (2007) 3′-Phosphoadenosine-5′-phosphosulfate reductase in complex with thioredoxin: a structural snapshot in the catalytic cycle. Biochemist 46:3942–3951Google Scholar
  56. Chen KY, Morris JC (1972) Kinetics of oxidation of aqueous sulfide by oxygen. Environ Sci Technol 6:529–537Google Scholar
  57. Chen TM, Kuschner WG, Gokhale J, Shofer S (2007) Outdoor air pollution: nitrogen dioxide, sulfur dioxide, and carbon monoxide health effects. Am J Med Sci 333:249–256PubMedGoogle Scholar
  58. Chiang YL, Hsieh YC, Fang JY, Liu EH, Huang YC, Chuankhayan P, Chen CJ (2009) Crystal structure of adenylylsulfate reductase from Desulfovibrio gigas suggests a potential self-regulation mechanism involving the C terminus of the β-subunit. J Bacteriol 191:7597–7608PubMedPubMedCentralGoogle Scholar
  59. Ciferri O, Tiano P, Mastromei G (eds) (2000) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Springer, New YorkGoogle Scholar
  60. Collins MD, Weddel F (1986) Respiratory quinones of sulphate-reducing and sulphur-reducing bacteria: a systematic investigation. Syst Appl Microbiol 8:8–18Google Scholar
  61. Constantin D, Bini A, Meletti E, Moldeus P, Monti D, Tomasi A (1996) Age-related differences in the metabolism of sulphite to sulphate and in the identification of sulphur trioxide radical in human polymorphonuclear leukocytes. Mech Ageing Dev 88:95–109PubMedGoogle Scholar
  62. Cord-Ruwisch R, Kleinitz W, Widdel F (1987) Sulfate-reducing bacteria and their activities in oil production. J Pet Technol 39:97–106Google Scholar
  63. Cord-Ruwisch R, Seitz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch Microbiol 149:350–357Google Scholar
  64. Costentin C (2008) Electrochemical approach to the mechanistic study of proton-coupled electron transfer. Chem Rev 108:2145–2179PubMedGoogle Scholar
  65. Cypionka H (1987) Uptake of sulfate, sulfite and thiosulfate by proton–anion symport in Desulfovibrio desulfuricans. Arch Microbiol 148:144–149Google Scholar
  66. Cypionka H (1994) Sulfate transport. In: Methods in enzymology, vol 243. Academic, San Diego, pp 3–14Google Scholar
  67. Cypionka H (1995) Solute transport and cell energetics. In: Sulfate-reducing bacteria. Springer, Boston, pp 151–184Google Scholar
  68. Czechowski MH, He SH, Nacro M, DerVartanian DV, Peck HD Jr, LeGall J (1984) A cytoplasmic nickel–iron hydrogenase with high specific activity from Desulfovibrio multispirans sp. N., a new species of sulfate reducing bacterium. Biochem Biophysical Res Comm 125:1025–1032Google Scholar
  69. da Silva SM, Voordouw J, Leitao C, Martins M, Voordouw G, Pereira IA (2013) Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism. Microbiology 159:1760–1769PubMedGoogle Scholar
  70. Dahl C (2008) Microbial sulfur metabolism. In: Friedrich CG (ed). Springer, Berlin/New York, pp 151–169Google Scholar
  71. Dahl C, Trüper HG (2001) Sulfite reductase and APS reductase from Archaeoglobus fulgidus. In: Methods in enzymology, vol 331. Academic, pp 427–441Google Scholar
  72. Daskalakis MI, Magoulas A, Kotoulas G, Catsikis I, Bakolas A, Karageorgis AP, Rigas F (2013) Pseudomonas and C. upriavidus isolates induce calcium carbonate precipitation for biorestoration of ornamental stone. J Appl Microbiol 115:409–423PubMedGoogle Scholar
  73. de Vito PC, Dreyfuss J (1964) Metabolic regulation of adenosine triphosphate sulfurylase in yeast. J Bacteriol 88:1341–1348PubMedCentralGoogle Scholar
  74. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54:2325–2340Google Scholar
  75. Devalia JL, Rusznak C, Herdman MJ, Trigg CJ, Davies RJ, Tarraf H (1994) Effect of nitrogen dioxide and sulphur dioxide on airway response of mild asthmatic patients to allergen inhalation. Lancet 344:1668–1671PubMedGoogle Scholar
  76. Devereux R, Delaney M, Widdel F, Stahl DA (1989) Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695PubMedPubMedCentralGoogle Scholar
  77. Devereux R, Kane MD, Winfrey J, Stahl DA (1992) Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst Appl Microbiol 15:601–609Google Scholar
  78. Dhami NK, Reddy MS, Mukherjee A (2014) Application of calcifying bacteria for remediation of stones and cultural heritages. Front Microbiol 5:304PubMedPubMedCentralGoogle Scholar
  79. Dhillon A, Teske A, Dillon J, Stahl DA, Sogin ML (2003) Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl Environ Microbiol 69:2765–2772PubMedPubMedCentralGoogle Scholar
  80. Didenko N, Skripnuk D (2014) The impact of energy resources on social development in Russia. In: Brebbia CA, Polonara F, Magaril ER, Passerini G (eds). Energy production and management in the 21st century: the quest for sustainable energy, vol 1. WIT Press, Southampton, pp 151–159Google Scholar
  81. Dowling LM, Crewther WG, Inglis AS (1986) The primary structure of component 8c-1, a subunit protein of intermediate filaments in wool keratin. Relationships with proteins from other intermediate filaments. Biochem J 236:695–703PubMedPubMedCentralGoogle Scholar
  82. Duarte AG, Catarino T, White GF, Lousa D, Neukirchen S, Soares CM, Pereira IA (2018) An electrogenic redox loop in sulfate reduction reveals a likely widespread mechanism of energy conservation. Nat Commun 9:5448PubMedPubMedCentralGoogle Scholar
  83. Elshahed MS, Senko JM, Najar FZ, Kenton SM, Roe BA, Dewers TA, Krumholz LR (2003) Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621PubMedPubMedCentralGoogle Scholar
  84. Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236PubMedPubMedCentralGoogle Scholar
  85. Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291PubMedGoogle Scholar
  86. Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 4:85–110PubMedGoogle Scholar
  87. Fiala G, Stetter KO (1986) Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61Google Scholar
  88. Fida TT, Voordouw J, Ataeian M, Kleiner M, Okpala GN, Mand J, Voordouw G (2018) Synergy of sodium nitroprusside and nitrate in inhibiting the activity of sulfate reducing bacteria in oil-containing bioreactors. Front Microbiol 9:981PubMedPubMedCentralGoogle Scholar
  89. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2017) Chemical biology of H2S signaling through persulfidation. Chem Rev 118:1253–1337PubMedPubMedCentralGoogle Scholar
  90. Finster K, Coates JD, Liesack W, Pfennig N (1997) Desulfuromonas thiophila sp. nov., a new obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int J Syst Evol Microbiol 47:754–758Google Scholar
  91. Fioletov VE, McLinden C, Krotkov N, Li C (2015) Lifetimes and emissions of SO2 from point sources estimated from OMI. Geophys Res Lett 42:1969–1976Google Scholar
  92. Fischer RX, Tillmanns E (1988) The equivalent isotropic displacement factor. Acta Crystallogr Sect C Cryst Struct Commun 44:775–776Google Scholar
  93. Fitz RM, Cypionka H (1989) A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch Microbiol 152:369–376Google Scholar
  94. Forsberg CW (1980) Sulfide production from cysteine by Desulfovibrio desulfuricans. Appl Environ Microbiol 39:453–455PubMedPubMedCentralGoogle Scholar
  95. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100PubMedPubMedCentralGoogle Scholar
  96. Fröstl JM, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58PubMedGoogle Scholar
  97. Gahan J, Schmalenberger A (2014) The role of bacteria and mycorrhiza in plant sulfur supply. Front Plant Sci 5:723PubMedPubMedCentralGoogle Scholar
  98. Galushko AS, Schink B (2000) Oxidation of acetate through reactions of the citric acid cycle by Geobacter sulfurreducens in pure culture and in syntrophic coculture. Arch Microbiol 174:314–321PubMedGoogle Scholar
  99. Gauri KL, Parks L, Jaynes J, Atlas R (1992) Removal of sulphated-crust from marble using sulphate-reducing bacteria. In: Stone cleaning and the nature, soiling and decay mechanisms of stone: proceedings of an international conference in Edinburgh, UK, 14–16 April 1992, pp 160–165Google Scholar
  100. Gebhardt MR, Daniel TC, Schweizer EE, Allmaras RR (1985) Conservation tillage. Science 230:625–630PubMedGoogle Scholar
  101. Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043PubMedGoogle Scholar
  102. Gigolashvili T, Kopriva S (2014) Transporters in plant sulfur metabolism. Front Plant Sci 5:442PubMedPubMedCentralGoogle Scholar
  103. Gilmour CC, Elias DA, Kucken AM, Brown SD, Palumbo AV, Schadt CW, Wall JD (2011) Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation. Appl Environ Microbiol 77:3938–3951PubMedPubMedCentralGoogle Scholar
  104. Gitt MA, Wang LF, Doi RH (1985) A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem 260:7178–7185PubMedGoogle Scholar
  105. Grein F, Ramos AR, Venceslau SS, Pereira IA (2013) Unifying concepts in anaerobic respiration: insights from dissimilatory sulfur metabolism. Biochimica et Biophysica Acta (BBA)-Bioenergetic 1827:145–160. doi: 10.1016/j.bbabio.2012.09.001Google Scholar
  106. Guimaraes LHS (2012) Carbohydrates from biomass: sources and transformation by microbial enzymes, carbohydrates—comprehensive studies on glycobiology and glycotechnology. Chuan-Fa Chang, IntechOpen, pp 441–458.  https://doi.org/10.5772/51576
  107. Günal S, Hardman R, Kopriva S, Mueller JW (2019) Sulfation pathways from red to green. J Biol Chem 294:12293–12312PubMedPubMedCentralGoogle Scholar
  108. Gutknecht J, Walter A (1981) Transport of protons and hydrochloric acid through lipid bilayer membranes. Biochim Biophys Acta (BBA)-Biomemb 641:183–188Google Scholar
  109. Haas KL, Franz KJ (2009) Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 109(10):4921–4960PubMedPubMedCentralGoogle Scholar
  110. Hammes F, Verstraete W (2002) Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev Environ Sci Biotechnol 1:3–7Google Scholar
  111. Hao X, Ma K (2003) Minimal sulfur requirement for growth and sulfur-dependent metabolism of the hyperthermophilic archaeon Staphylothermus marinus. Archaea:191–197Google Scholar
  112. Hausmann B, Pelikan C, Herbold CW, Köstlbacher S, Albertsen M, Eichorst SA, Stingl U (2018) Peatland acidobacteria with a dissimilatory sulfur metabolism. ISME J 12:1729PubMedPubMedCentralGoogle Scholar
  113. Hazeu W, Batenburg-Van der Vegte WH, Bos P, Van der Pas RK, Kuenen JG (1988) The production and utilization of intermediary elemental sulfur during the oxidation of reduced sulfur compounds by Thiobacillus ferrooxidans. Arch Microbiol 150:574–579Google Scholar
  114. Hébert A, Forquin-Gomez MP, Roux A, Aubert J, Junot C, Heilier JF, Beckerich JM (2013) New insights into sulfur metabolism in yeasts as revealed by studies of Yarrowia lipolytica. Appl Environ Microbiol 79:1200–1211PubMedPubMedCentralGoogle Scholar
  115. Hedderich R, Klimmek O, Kröger A, Dirmeier R, Keller M, Stetter KO (1998) Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol Rev 22:353–381Google Scholar
  116. Heggendorn FL, Fraga AGM, Ferreira DDC, Gonçalves LS, Lione VDOF, Lutterbach MTS (2018) Sulfate-reducing bacteria: biofilm formation and corrosive activity in endodontic files. Int J Dentistry 2018:1–12Google Scholar
  117. Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Daugherty SC (2004) The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22(5):554PubMedGoogle Scholar
  118. Henrichs SM, Reeburgh WS (1987) Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol J 5(3–4):191–237Google Scholar
  119. Herrmann J, Ravilious GE, McKinney SE, Westfall CS, Lee SG, Baraniecka P, Jez JM (2014) Structure and mechanism of soybean ATP sulfurylase and the committed step in plant sulfur assimilation. J Biol Chem 289(15):10919–10929PubMedPubMedCentralGoogle Scholar
  120. Heselmeyer K, Fischer U, Krumbein WE, Warscheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. Bioforum 1(2):89Google Scholar
  121. Hocking WP, Stokke R, Roalkvam I, Steen IH (2014) Identification of key components in the energy metabolism of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus by transcriptome analyses. Front Microbiol 5:95PubMedPubMedCentralGoogle Scholar
  122. Hryniewicz M, Sirko A, Pałucha A, Böck A, Hulanicka D (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: identification of a gene encoding a novel protein involved in thiosulfate binding. J Bacteriol 172(6):3358–3366PubMedPubMedCentralGoogle Scholar
  123. Huber SC, Huber JL, Campbell WH, Redinbaugh MG (1992) Apparent dependence of the light activation of nitrate reductase and sucrose-phosphate synthase activities in spinach leaves on protein synthesis. Plant Cell Physiol 33(5):639–646Google Scholar
  124. Huber O, Korn R, McLaughlin J, Ohsugi M, Herrmann BG, Kemler R (1996) Nuclear localization of β-catenin by interaction with transcription factor LEF-1. Mech Dev 59(1):3–10PubMedGoogle Scholar
  125. Huber R, Sacher M, Vollmann A, Huber H, Rose D (2000) Respiration of arsenate and selenate by hyperthermophilic archaea. Syst Appl Microbiol 23(3):305–314PubMedGoogle Scholar
  126. Hügler M, Wirsen CO, Fuchs G, Taylor CD, Sievert SM (2005) Evidence for autotrophic CO2 fixation via the reductive tricarboxylic acid cycle by members of the subdivision of proteobacteria. J Bacteriol 187(9):3020–3027PubMedPubMedCentralGoogle Scholar
  127. Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur IS (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89(1):101–112Google Scholar
  128. Jaramillo ML, Abanto M, Quispe RL, Calderón J, del Valle LJ, Talledo M, Ramírez P (2012) Cloning, expression and bioinformatics analysis of ATP sulfurylase from Acidithiobacillus ferrooxidans ATCC 23270 in Escherichia coli. Bioinformatics 8(15):695Google Scholar
  129. Jeanjean R, Broda E (1977) Dependence of sulphate uptake by Anacystis nidulans on energy, on osmotic shock and on sulphate starvation. Arch Microbiol 114(1):19–23PubMedGoogle Scholar
  130. Jeanthon C, L’Haridon S, Cueff V, Banta A, Reysenbach AL, Prieur D (2002) Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52(3):765–772PubMedGoogle Scholar
  131. Jiménez-López C, Rodriguez-Navarro C, Piñar G, Carrillo-Rosúa FJ, Rodriguez-Gallego M, Gonzalez-Muñoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936PubMedGoogle Scholar
  132. Jørgensen BB (1990) A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249(4965):152–154PubMedGoogle Scholar
  133. Jørgensen BB, Bang M, Blackburn TH (1990) Anaerobic mineralization in marine sediments from the Baltic Sea–North Sea transition. Mar Ecol Prog Ser 59:39–54Google Scholar
  134. Jørgensen BB, Findlay AJ, Pellerin A (2019) The biogeochemical sulfur cycle of marine sediments. Front Microbiol 10:849PubMedPubMedCentralGoogle Scholar
  135. Jormakka M, Törnrot S, Byrne B, Iwata S (2002) Molecular basis of proton motive force generation: structure of formate dehydrogenase-N. Science 295(5561):1863–1868PubMedGoogle Scholar
  136. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. Biodegradation—Life of Science, pp 289–320. doi: 10.5772/56194Google Scholar
  137. Jroundi F, Gómez-Suaga P, Jimenez-Lopez C, González-Muñoz MT, Fernandez-Vivas MA (2012) Stone-isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci Total Environ 425:89–98PubMedGoogle Scholar
  138. Junier P, Junier T, Podell S, Sims DR, Detter JC, Lykidis A, Bernier-Latmani R (2010) The genome of the Gram-positive metal- and sulfate-reducing bacterium Desulfotomaculum reducens strain MI-1. Environ Microbiol 12(10):2738–2754PubMedPubMedCentralGoogle Scholar
  139. Kety (1979) Disorders of the human brain. Sci Am 241(3):202–218PubMedGoogle Scholar
  140. Kim BH, Kim HJ, Hyun MS, Park DH (1999) Direct electrode reaction of Fe(III)-reducing bacterium, Shewanella putrefaciens. J Microbiol Biotechnol 9:127–131Google Scholar
  141. Klein L, Bruno R, Bavassano B, Rosenbauer H (1993) Anisotropy and minimum variance of magnetohydrodynamic fluctuations in the inner heliosphere. J Geophys Res Space Physics 98(A10):17461–17466Google Scholar
  142. Klenk R, Blieske U, Dieterle V, Ellmer K, Fiechter S, Hengel I, Lux-Steiner MC (1997) Properties of CuInS2 thin films grown by a two-step process without H2S. Solar Energy Mater Solar Cell 49(1–4):349–356Google Scholar
  143. Kodama Y, Watanabe K (2003) Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl Environ Microbiol 69(1):107–112PubMedPubMedCentralGoogle Scholar
  144. Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151(3):232–237Google Scholar
  145. Kreke B, Cypionka H (1992) Protonmotive force in freshwater sulfate-reducing bacteria, and its role in sulfate accumulation in Desulfobulbus propionicus. Arch Microbiol 158(3):183–187PubMedGoogle Scholar
  146. Kuhad RC, Singh A (2013) Biotechnology for environmental management and resource recovery. Springer, New Delhi, pp 191–218Google Scholar
  147. L’Haridon S, Cilia V, Messner P, Raguenes G, Gambacorta A, Sleytr UB, Jeanthon C (1998) Desulfurobacterium thermolithotrophum gen. nov., sp. nov., a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 48(3):701–711Google Scholar
  148. Laanbroek HJ, Stal LJ, Veldkamp H (1978) Utilization of hydrogen and formate by Campylobacter sp. under aerobic and anaerobic conditions. Arch Microbiol 119(1):99–102PubMedGoogle Scholar
  149. Laanbroek HJ, Smit AJ, Nulend GK, Veldkamp H (1979) Competition for L-glutamate between specialised and versatile Clostridium sp. Arch Microbiol 120(1):61–66PubMedGoogle Scholar
  150. Labrado AL, Brunner B, Bernasconi SM, Peckmann J (2019) Formation of large native sulfur deposits does not require molecular oxygen. Front Microbiol 10:24PubMedPubMedCentralGoogle Scholar
  151. Langer S, Hashimoto M, Hobl B, Mathes T, Mack M (2013) Flavoproteins are potential targets for the antibiotic roseoflavin in Escherichia coli. J Bacteriol 195(18):4037–4045PubMedPubMedCentralGoogle Scholar
  152. Larson LJ, Kuno M, Tao FM (2000) Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J Chem Phys 112(20):8830–8838Google Scholar
  153. Laue H, Friedrich M, Ruff J, Cook AM (2001) Dissimilatory sulfite reductase (desulfoviridin) of the taurine-degrading, non-sulfate-reducing bacterium Bilophila wadsworthia RZATAU contains a fused DsrB–DsrD subunit. J Bacteriol 183(5):1727–1733PubMedPubMedCentralGoogle Scholar
  154. Leathen WW, Kinsel NA, Braley SA Sr (1956) Ferrobacillus ferrooxidans: a chemosynthetic autotrophic bacterium. J Bacteriol 72(5):700PubMedPubMedCentralGoogle Scholar
  155. Leavitt WD, Bradley AS, Santos AA, Pereira IAC, Johnston DT (2015) Sulfur isotope effects of dissimilatory sulfite reductase. Front Microbiol 6:1392PubMedPubMedCentralGoogle Scholar
  156. Leyva Salas M, Mounier J, Valence F, Coton M, Thierry A, Coton E (2017) Antifungal microbial agents for food biopreservation—a review. Microorganism 5(3):37Google Scholar
  157. Liamleam W, Annachhatre AP (2007) Electron donors for biological sulfate reduction. Biotechnol Adv 25(5):452–463PubMedGoogle Scholar
  158. Lie TJ, Godchaux W, Leadbetter ER (1999) Sulfonates as terminal electron acceptors for growth of sulfite-reducing bacteria (Desulfitobacterium spp.) and sulfate-reducing bacteria: effects of inhibitors of sulfidogenesis. Appl Environ Microbiol 65(10):4611–4617PubMedPubMedCentralGoogle Scholar
  159. Lodish H, Berk A, Kaiser CA, Krieger M, Scott MP, Bretscher A, Matsudaira P (2000) Molecular cell biology, 6th edn. W.H. Freeman and Company, New YorkGoogle Scholar
  160. Lonergan DJ, Jenter HL, Coates JD, Phillips EJ, Schmidt TM, Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178(8):2402–2408PubMedPubMedCentralGoogle Scholar
  161. Long Y, Fang Y, Shen D, Feng H, Chen T (2016) Hydrogen sulfide (H2S) emission control by aerobic sulfate reduction in landfill. Sci Rep 6:38103PubMedPubMedCentralGoogle Scholar
  162. Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8PubMedGoogle Scholar
  163. Lovley DR, Phillips EJ, Lonergan DJ, Widman PK (1995) Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61(6):2132–2138PubMedPubMedCentralGoogle Scholar
  164. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth the Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144(2):147–150Google Scholar
  165. Majumder ELW, Wall JD (2017) Uranium bio-transformations: chemical or biological processes? Open J Inorg Chem 7(2):28–60Google Scholar
  166. Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV (2005) Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 33(14):4626–4638PubMedPubMedCentralGoogle Scholar
  167. Manzella MP, Holmes DE, Rocheleau JM, Chung A, Reguera G, Kashefi K (2015) The complete genome sequence and emendation of the hyperthermophilic, obligate iron-reducing archaeon “Geoglobus ahangari” strain 234 T. Stand Genomic Sci 10(1):77PubMedPubMedCentralGoogle Scholar
  168. Martins M, Faleiro ML, Barros RJ, Veríssimo AR, Barreiros MA, Costa MC (2009) Characterization and activity studies of highly heavy metal resistant sulphate-reducing bacteria to be used in acid mine drainage decontamination. J Hazard Mater 166(2–3):706–713PubMedGoogle Scholar
  169. Masuda S, Bao Z, Okubo T, Sasaki K, Ikeda S, Shinoda R, Minamisawa K (2016) Sulfur fertilization changes the community structure of rice root, and soil-associated bacteria. Microbes Environ 31(1):70–75PubMedPubMedCentralGoogle Scholar
  170. Matejuk A, Leng Q, Begum MD, Woodle MC, Scaria P, Chou ST, Mixson AJ (2010) Peptide-based antifungal therapies against emerging infections. Drugs Future 35(3):197PubMedPubMedCentralGoogle Scholar
  171. Matias PM, Pereira IA, Soares CM, Carrondo MA (2005) Sulphate respiration from hydrogen in Desulfovibrio bacteria: a structural biology overview. Prog Biophys Mol Biol 89(3):292–329PubMedGoogle Scholar
  172. May E, Webster A, Inkpen R, Zamarreño D, Kuever J, Rudolph C, Ranalli G (2008) The BIOBRUSH project for bioremediation of Heritage stone. In: Heritage microbiology and science: microbes, monuments and maritime materials. Royal Society of Chemistry, Cambridge, pp 76–93Google Scholar
  173. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3(8):445–451Google Scholar
  174. Md Zain WS, Salleh H, Insyirah, N., Abdullah, A. (2018). Natural biocides for mitigation of sulphate reducing bacteria. Int J Corrosion 2018: 1–7Google Scholar
  175. Melim Kristen M, Shinglman Penelope J, Boston Diana E, Northup Michael N, Spilde J, Michael Queen L (2001) Evidence for microbial involvement in pool finger precipitation, Hidden Cave, New Mexico. Geomicrobiol J 18(3):311–329Google Scholar
  176. Menendez JA, Menendez EM, Iglesias MJ, Garcıa A, Pis JJ (1999) Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon 37(7):1115–1121Google Scholar
  177. Meyer B, Kuever J (2008) Homology modeling of dissimilatory APS reductases (AprBA) of sulfur-oxidizing and sulfate-reducing prokaryotes. PLoS One 3(1):e1514PubMedPubMedCentralGoogle Scholar
  178. Miralles-Robledillo JM, Torregrosa-Crespo J, Martínez-Espinosa RM, Pire C (2019) DMSO reductase family: phylogenetics and applications of extremophiles. Int J Mol Sci 20(13):3349PubMedCentralGoogle Scholar
  179. Módis K, Bos EM, Calzia E, Van Goor H, Coletta C, Papapetropoulos A, Szabo C (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171(8):2123–2146PubMedPubMedCentralGoogle Scholar
  180. Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F 420 in Archaeoglobus fulgidus. Arch Microbiol 152(4):362–368Google Scholar
  181. Müller A, Krebs B (eds) (2016) Sulfur: its significance for chemistry, for the geo-, bio-, and cosmosphere and technology, vol 5. Elsevier, BurlingtonGoogle Scholar
  182. Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J (2016) Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol 7:781PubMedPubMedCentralGoogle Scholar
  183. Mussmann M, Richter M, Lombardot T, Meyerdierks A, Kuever J, Kube M, Amann R (2005) Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer. J Bacteriol 187(20):7126–7137PubMedPubMedCentralGoogle Scholar
  184. Myers CR, Nealson KH (1988a) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240(4857):1319–1321PubMedGoogle Scholar
  185. Myers CR, Nealson KH (1988b) Microbial reduction of manganese oxides: interactions with iron and sulfur. Geochim Cosmochim Acta 52(11):2727–2732Google Scholar
  186. Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and other sulfate-reducing bacteria isolated from an anaerobic-purification plant. Appl Environ Microbiol 53(4):802–809PubMedPubMedCentralGoogle Scholar
  187. Nazina TN, Rozanova EP, Kuznetsov SI (1985) Microbial oil transformation processes accompanied by methane and hydrogen-sulfide formation. Geomicrobiol J 4(2):103–130Google Scholar
  188. Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and bioremediation of uranium and other priority radionuclides. Chem Geol 363:164–184Google Scholar
  189. Nguyen JL, Schwartz J, Dockery DW (2014) The relationship between indoor and outdoor temperature, apparent temperature, relative humidity, and absolute humidity. Indoor Air 24(1):103–112PubMedGoogle Scholar
  190. Noreña CZ, Rigon RT (2018) Effect of blanching on enzyme activity and bioactive compounds of blackberry. Braz Arch Biol Technol 61:e18180018.  https://doi.org/10.1590/1678-4324-2018180018
  191. Northup E, Kathleen H, Lavoie D (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18(3):199–222Google Scholar
  192. Norvaišienė R, Miniotaitė R, Stankevičius V (2003) Climatic and air pollution effects on building facades. Mater Sci (Medžiagotyra) 16(1):80–85Google Scholar
  193. Novotný C, Kapralek F (1979) Participation of quinone and cytochrome b in tetrathionate reductase respiratory chain of Citrobacter freundii. Biochem J 178(1):237–240PubMedPubMedCentralGoogle Scholar
  194. O’Brien JM, Wolkin RH, Moench TT, Morgan JB, Zeikus JG (1984) Association of hydrogen metabolism with unitrophic or mixotrophic growth of Methanosarcina barkeri on carbon monoxide. J Bacteriol 158(1):373–375PubMedPubMedCentralGoogle Scholar
  195. O’Flaherty V, Lens P, Leahy B, Colleran E (1998) Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater. Water Res 32(3):815–825Google Scholar
  196. Odom JM, Singleton R (1993) The sulfate-reducing bacteria: contemporary perspectives. Springer, New York, pp 189–210Google Scholar
  197. Okafor N (2011) Taxonomy, physiology, and ecology of aquatic microorganisms. In: Environmental microbiology of aquatic and waste systems. Springer, Dordrecht, pp 47–107Google Scholar
  198. Oliveira TF, Vonrhein C, Matias PM, Venceslau SS, Pereira IA, Archer M (2008) The crystal structure of Desulfovibrio vulgaris dissimilatory sulfite reductase bound to DsrC provides novel insights into the mechanism of sulfate respiration. J Biol Chem 283(49):34141–34149PubMedPubMedCentralGoogle Scholar
  199. Oliveira TF, Franklin E, Afonso JP, Khan AR, Oldham NJ, Pereira IA, Archer M (2011) Structural insights into dissimilatory sulfite reductases: structure of desulforubidin from Desulfomicrobium norvegicum. Front Microbiol 2(71):71PubMedPubMedCentralGoogle Scholar
  200. Oliver MJ (2014) Why we need GMO crops in agriculture. Missouri Med 111(6):492PubMedGoogle Scholar
  201. Ollivier B, Zeyen N, Gales G, Hickman-Lewis K, Gaboyer F, Benzerara K, Westall F (2018) Importance of prokaryotes in the functioning and evolution of the present and past geosphere and biosphere. In: Prokaryotes and evolution. Springer, Cham, pp 57–129Google Scholar
  202. Oltmann LF, Stouthamer AH (1975) Reduction of tetrathionate, trithionate and thiosulphate, and oxidation of sulphide in Proteus mirabilis. Arch Microbiol 105(1):135–142PubMedGoogle Scholar
  203. Oltmann LF, Van der Beek EG, Stouthamer AH (1975) Reduction of inorganic sulphur compounds by facultatively aerobic bacteria. Plant Soil 43(1–3):153–169Google Scholar
  204. Ortega-Calvo JJ, Ariño X, Hernandez-Marine M, Saiz-Jimenez C (1995) Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci Total Environ 167(1–3):329–341Google Scholar
  205. Ouattara AS, Traore AS, Garcia JL (1992) Characterization of Anaerovibrio burkinabensis sp. nov., a lactate fermenting bacterium isolated from rice field soils. Int J Syst Evol Microbiol 42(3):390–397Google Scholar
  206. Oyaizu H, Woese CR (1985) Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst Appl Microbiol 6(3):257–263Google Scholar
  207. Ozawa K, Tsapin AI, Nealson KH, Cusanovich MA, Akutsu H (2000) Expression of a tetraheme protein, Desulfovibrio vulgaris Miyazaki F cytochrome c3, in Shewanella oneidensis MR-1. Appl Environ Microbiol 66(9):4168–4171PubMedPubMedCentralGoogle Scholar
  208. Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276(5313):734–740PubMedPubMedCentralGoogle Scholar
  209. Palková Z (2004) Multicellular microorganisms: laboratory versus nature. EMBO Rep 5(5):470–476PubMedPubMedCentralGoogle Scholar
  210. Parey K, Fritz G, Ermler U, Kroneck PM (2013) Conserving energy with sulfates around 100 C—structure and mechanism of key metal enzymes in hyperthermophilic Archaeoglobus fulgidus. Metallomics 5(4):302–317PubMedGoogle Scholar
  211. Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the substrates for sulphate-reducing bacteria within marine and esturaine sediments with different rates of sulphate reduction. Microbiology 135(1):175–187Google Scholar
  212. Peck HD (1961) Enzymatic basis for assimilatory and dissimilatory sulfate reduction. J Bacteriol 82(6):933–939PubMedPubMedCentralGoogle Scholar
  213. Peck HD Jr (1960) Adenosine 5′-phosphosulfate as an intermediate in the oxidation of thiosulfate by Thiobacillus thioparus. Proc Natl Acad Sci U S A 46(8):1053PubMedPubMedCentralGoogle Scholar
  214. Peck HD, Odom M (1981) Anaerobic fermentations of cellulose to methane. In: Trends in the biology of fermentations for fuels and chemicals. Springer, Boston, pp 375–395Google Scholar
  215. Pereira Roders A, Van Oers R (2011) Initiating cultural heritage research to increase Europe’s competitiveness. J Cultural Herit Manag Sustain Dev 1(2):84–95Google Scholar
  216. Pereira IA, Ramos AR, Grein F, Marques MC, Da Silva SM, Venceslau SS (2011a) A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea. Front Microbiol 2:69PubMedPubMedCentralGoogle Scholar
  217. Pereira PHF, Voorwald HCJ, Cioffi MOH, Mullinari DR, Da Luz SM, Da Silva MLCP (2011b) Sugarcane bagasse pulping and bleaching: thermal and chemical characterization. Biol Res 6(3):2471–2482Google Scholar
  218. Pester M, Knorr KH, Friedrich MW, Wagner M, Loy A (2012) Sulfate-reducing microorganisms in wetlands—fameless actors in carbon cycling and climate change. Front Microbiol 3:72PubMedPubMedCentralGoogle Scholar
  219. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110(1):3–12PubMedGoogle Scholar
  220. Pfennig N, Widdel F (1981) Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In: Biology of inorganic nitrogen and sulfur. Springer, Berlin/Heidelberg, pp 169–177Google Scholar
  221. Pihl TD, Black LK, Schulman BA, Maier RJ (1992) Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii. J Bacteriol 174(1):137–143PubMedPubMedCentralGoogle Scholar
  222. Pikuta E, Lysenko A, Suzina N, Osipov G, Kuznetsov B, Tourova T, Laurinavichius K (2000) Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50(1):25–33PubMedGoogle Scholar
  223. Plugge CM, Zhang W, Scholten J, Stams AJ (2011) Metabolic flexibility of sulfate-reducing bacteria. Front Microbiol 2:81PubMedPubMedCentralGoogle Scholar
  224. Poyatos F, Morales F, Nicholson AW, Giordano A (2018) Physiology of biodeterioration on canvas paintings. J Cell Physiol 233(4):2741–2751PubMedGoogle Scholar
  225. Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Trüper HG, Hormes J (1999) In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by x-ray absorption near edge spectroscopy. Biochim Biophys Acta (BBA)-Gen Subj 1428(2–3):446–454Google Scholar
  226. Prioretti L, Gontero B, Hell R, Giordano M (2014) Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Front Plant Sci 5:597PubMedPubMedCentralGoogle Scholar
  227. Probst GS, Bousquet WF, Miya TS (1977) Correlation of hepatic metallothionein concentrations with acute cadmium toxicity in the mouse. Toxicol Appl Pharmacol 39(1):61–69PubMedGoogle Scholar
  228. Rabus R, Hansen TA, Widdel F (2013) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg, pp 309–404Google Scholar
  229. Ramesh MV, Sirakova TD, Kolattukudy PE (1995) Cloning and characterization of the cDNAs and genes (mep20) encoding homologous metalloproteinases from Aspergillus flavus and A. fumigatus. Gene 165(1):121–125PubMedGoogle Scholar
  230. Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulphates on artistic stoneworks. Int Biodeterior Biodegrad 40(2–4):255–261Google Scholar
  231. Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. In: Of microbe art. Springer, Boston, pp 231–245Google Scholar
  232. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83PubMedGoogle Scholar
  233. Rapp-Giles BJ, Casalot L, English RS, Ringbauer JA, Dolla A, Wall JD (2000) Cytochrome c3 mutants of Desulfovibrio desulfuricans. Appl Environ Microbiol 66(2):671–677PubMedPubMedCentralGoogle Scholar
  234. Reece SY, Hodgkiss JM, Stubbe J, Nocera DG (2006) Proton-coupled electron transfer: the mechanistic underpinning for radical transport and catalysis in biology. Philos Trans R Soc B Biol Sci 361(1472):1351–1364Google Scholar
  235. Roden EE, Lovley DR (1993) Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59(3):734–742PubMedPubMedCentralGoogle Scholar
  236. Rodriguez-Navarro C, Rodriguez-Gallego M, Chekroun KB, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193PubMedPubMedCentralGoogle Scholar
  237. Rogerio-Candelera MA, Lazzari M, Cano E (eds) (2013) Science and technology for the conservation of cultural heritage. CRC, Boca RatonGoogle Scholar
  238. Rosnes JT, Torsvik T, Lien T (1991) Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl Environ Microbiol 57(8):2302–2307PubMedPubMedCentralGoogle Scholar
  239. Roy AB, Trudinger PA (1970) The chemistry of some sulphur compounds. The biochemistry of inorganic compounds of sulphur. Cambridge University Press, Cambridge, pp 7–29Google Scholar
  240. Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ Part B Urban Atmos 27(1):77–85Google Scholar
  241. Sáiz-Jiménez C, Garcia-Rowe J, Rodriguez-Hidalgo JM (1991) Biodeterioration of polychrome Roman mosaics. Int Biodeterior 28(1–4):65–79Google Scholar
  242. Sanmartín P, Bosch-Roig P (2019) Biocleaning to remove graffiti: a real possibility? Advances towards a complete protocol of action. Coating 9(2):104Google Scholar
  243. Santoro C, Zarkout K, Le Hô AS, Mirambet F, Gourier D, Binet L, Griesmar P (2014) New highlights on degradation process of verdigris from easel paintings. Appl Phys A 114(3):637–645Google Scholar
  244. Santos AA, Venceslau SS, Grein F, Leavitt WD, Dahl C, Johnston DT, Pereira IA (2015) A protein trisulfide couples dissimilatory sulfate reduction to energy conservation. Science 350(6267):1541–1545PubMedGoogle Scholar
  245. Schäfer H, Mathey D, Hugo F, Bhakdi S (1986) Deposition of the terminal C5b-9 complement complex in infarcted areas of human myocardium. J Immunol 137(6):1945–1949PubMedGoogle Scholar
  246. Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148(3):218–225Google Scholar
  247. Schauder R, Preuß A, Jetten M, Fuchs G (1988) Oxidative and reductive acetyl CoA/carbon monoxide dehydrogenase pathway in Desulfobacterium autotrophicum. Arch Microbiol 151(1):84–89Google Scholar
  248. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev 69(4):585–607PubMedPubMedCentralGoogle Scholar
  249. Schiffer A, Parey K, Warkentin E, Diederichs K, Huber H, Stetter KO, Ermler U (2008) Structure of the dissimilatory sulfite reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Mol Biol 379(5):1063–1074PubMedGoogle Scholar
  250. Schillinger U, Geisen R, Holzapfel WH (1996) Potential of antagonistic microorganisms and bacteriocins for the biological preservation of foods. Trends Food Sci Technol 7(5):158–164Google Scholar
  251. Schlesner H, Lawson PA, Collins MD, Weiss N, Wehmeyer U, Völker H, Thomm M (2001) Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-D-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51(2):425–431PubMedGoogle Scholar
  252. Schmidt A, Jäger K (1992) Open questions about sulfur metabolism in plants. Annu Rev Plant Biol 43(1):325–349Google Scholar
  253. Schmitz ML, Baeuerle PA (1991) The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J 10(12):3805–3817PubMedPubMedCentralGoogle Scholar
  254. Scholten JC, Stams AJ (2000) Isolation and characterization of acetate-utilizing anaerobes from freshwater sediment. Microb Ecol 40(4):292–299PubMedGoogle Scholar
  255. Segerer AH, Stetter KO, Klink F (1985) Two contrary modes of chemolithotrophy in the same archaebacterium. Nature 313(6005):787PubMedGoogle Scholar
  256. Segerer AH, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: facultatively aerobic, extremely acidophilic thermophilic sulfur-metabolizing archaebacteria. Int J Syst Evol Microbiol 36(4):559–564Google Scholar
  257. Segerer AH, Trincone A, Gahrtz M, Stetter KO (1991) Stygiolobus azoricus gen. nov., sp. nov. represents a novel genus of anaerobic, extremely thermoacidophilic archaebacteria of the order Sulfolobales. Int J Syst Evol Microbiol 41(4):495–501Google Scholar
  258. Selig M, Schönheit P (1994) Oxidation of organic compounds to CO2 with sulfur or thiosulfate as electron acceptor in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum proceeds via the citric acid cycle. Arch Microbiol 162(4):286–294Google Scholar
  259. Selig M, Xavier KB, Santos H, Schönheit P (1997) Comparative analysis of Embden–Meyerhof and Entner–Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 167(4):217–232PubMedGoogle Scholar
  260. Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64(3–4):243–272Google Scholar
  261. Siebers B, Hensel R (1993) Glucose catabolism of the hyperthermophilic archaeum Thermoproteus tenax. FEMS Microbiol Lett 111(1):1–7Google Scholar
  262. Silva M, Rosado T, Teixeira D, Candeias A, Caldeira AT (2015) Production of green biocides for cultural heritage. Novel Biotechnol Solution. Int J Conserv Sci 6:519–530Google Scholar
  263. Silva-Castro GA, Uad I, Gonzalez-Martinez A, Rivadeneyra A, Gonzalez-Lopez J, Rivadeneyra MA (2015) Bioprecipitation of calcium carbonate crystals by bacteria isolated from saline environments grown in culture media amended with seawater and real brine. Biomed Res Int 2015:1–12Google Scholar
  264. Simon J, Kroneck PM (2013) Microbial sulfite respiration. In: Advances in microbial physiology, vol 62. Academic, New York, pp 45–117Google Scholar
  265. Sirko A, Hryniewicz M, Hulanicka D, Böck A (1990) Sulfate and thiosulfate transport in Escherichia coli K-12: nucleotide sequence and expression of the cys TWAM gene cluster. J Bacteriol 172(6):3351–3357PubMedPubMedCentralGoogle Scholar
  266. Skyring GW (1987) Sulfate reduction in coastal ecosystems. Geomicrobiol J 5(3–4):295–374Google Scholar
  267. Smutná T, Pilarová K, Tarábek J, Tachezy J, Hrdý I (2014) Novel functions of an iron–sulfur flavoprotein from Trichomonas vaginalis hydrogenosomes. Antimicrob Chemo 58(6):3224–3232Google Scholar
  268. Soffritti I, D’Accolti M, Lanzoni L, Volta A, Bisi M, Mazzacane S, Caselli E (2019) The potential use of microorganisms as restorative agents: an update. Sustainability 11(14):3853Google Scholar
  269. Speich N, Dahl C, Heisig P, Klein A, Lottspeich F, Stetter KO, Trüper HG (1994) Adenylylsulphate reductase from the sulphate-reducing archaeon Archaeoglobus fulgidus: cloning and characterization of the genes and comparison of the enzyme with other iron–sulphur flavoproteins. Microbiology 140(6):1273–1284PubMedGoogle Scholar
  270. Sperling D, Kappler U, Wynen A, Dahl C, Trüper HG (1998) Dissimilatory ATP sulfurylase from the hyperthermophilic sulfate reducer Archaeoglobus fulgidus belongs to the group of homo-oligomeric ATP sulfurylases. FEMS Microbiol Lett 162(2):257–264PubMedGoogle Scholar
  271. Stahlmann R, Korte M, Van Loveren H, Vos JG, Thiel R, Neubert D (1992) Abnormal thymus development and impaired function of the immune system in rats after prenatal exposure to aciclovir. Arch Toxicol 66(8):551–559PubMedGoogle Scholar
  272. Steinsbu BO, Thorseth IH, Nakagawa S, Inagaki F, Lever MA, Engelen B, Pedersen RB (2010) Archaeoglobus sulfaticallidus sp. nov., a thermophilic and facultatively lithoautotrophic sulfate-reducer isolated from black rust exposed to hot ridge flank crustal fluids. Int J Syst Evol Microbiol 60(12):2745–2752PubMedGoogle Scholar
  273. Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art—tilting at windmills? Appl Microbiol Biotechnol 97(22):9637–9646PubMedPubMedCentralGoogle Scholar
  274. Stetter KO, Huber R, Blöchl E, Kurr M, Eden RD, Fielder M, Vance I (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365(6448):743Google Scholar
  275. Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML (2008) Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product–derived Bacillus amyloliquefaciens. J Appl Microbiol 104(4):1067–1074PubMedGoogle Scholar
  276. Syed (2006) Atmospheric corrosion of materials. EMI J Eng Res 11(1):1–24Google Scholar
  277. Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C, Bouillaud F (2014) Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171(8):2099–2122PubMedPubMedCentralGoogle Scholar
  278. Taylor J, Parkes RJ (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. Microbiology 129(11):3303–3309Google Scholar
  279. Thom J, Anderson GM (2008) The role of thermochemical sulfate reduction in the origin of Mississippi Valley–type deposits. I. Experimental results. Geofluids 8(1):16–26Google Scholar
  280. Tian H, Gao P, Chen Z, Li Y, Li Y, Wang Y, Ma T (2017) Compositions and abundances of sulfate-reducing and sulfur-oxidizing microorganisms in water-flooded petroleum reservoirs with different temperatures in China. Front Microbiol 8:143PubMedPubMedCentralGoogle Scholar
  281. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671PubMedGoogle Scholar
  282. Toran L, Harris RF (1989) Interpretation of sulfur and oxygen isotopes in biological and abiological sulfide oxidation. Geochim Cosmochim Acta 53(9):2341–2348Google Scholar
  283. Ueki A, Suto T (1979) Cellular fatty acid composition of sulfate-reducing bacteria. J Gen Appl Microbiol 25(3):185–196Google Scholar
  284. Ullrich TC, Blaesse M, Huber R (2001) Crystal structure of ATP sulfurylase from Saccharomyces cerevisiae, a key enzyme in sulfate activation. EMBO J 20(3):316–329PubMedPubMedCentralGoogle Scholar
  285. Urbina J, Patil A, Fujishima K, Paulino-Lima IG, Saltikov C, Rothschild LJ (2019) A new approach to biomining: bioengineering surfaces for metal recovery from aqueous solutions. Sci Rep 9(1):1–11Google Scholar
  286. Urzì C (1999) On microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. A report on the International Conference on Microbiology and Conservation (ICMC 1999). Environ Microbiol 1(6):551–553PubMedGoogle Scholar
  287. Valente FM, Saraiva LM, LeGall J, Xavier AV, Teixeira M, Pereira IA (2001) A membrane-bound cytochrome c3: a type II cytochrome c3 from Desulfovibrio vulgaris Hildenborough. Chembiochem 2(12):895–905PubMedGoogle Scholar
  288. Van Driessche AE, Stawski TM, Benning LG, Kellermeier M (2017) Calcium sulfate precipitation throughout its phase diagram. In: New perspectives on mineral nucleation and growth. Springer, Cham, pp 227–256Google Scholar
  289. Velho RV, Medina LFC, Segalin J, Brandelli A (2011) Production of lipopeptides among Bacillus strains showing growth inhibition of phytopathogenic fungi. Folia Microbiol 56(4):297Google Scholar
  290. Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain–treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66Google Scholar
  291. Venceslau SS, Lino RR, Pereira IA (2010) The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem 285(30):22774–22783PubMedPubMedCentralGoogle Scholar
  292. Venceslau SS, Stockdreher Y, Dahl C, Pereira IAC (2014) The “bacterial heterodisulfide” DsrC is a key protein in dissimilatory sulfur metabolism. Biochim Biophysica Acta (BBA)-Bioenerg 1837(7):1148–1164Google Scholar
  293. Venkateswaran K, Chung S, Allton J, Kern R (2004) Evaluation of various cleaning methods to remove Bacillus spores from spacecraft hardware materials. Astrobiology 4(3):377–390PubMedGoogle Scholar
  294. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1):1–43PubMedPubMedCentralGoogle Scholar
  295. Vimr ER, Kalivoda KA, Deszo EL, Steenbergen SM (2004) Diversity of microbial sialic acid metabolism. Microbiol Mol Biol Rev 68(1):132–153PubMedPubMedCentralGoogle Scholar
  296. Vladár P, Rusznyák A, Márialigeti K, Borsodi AK (2008) Diversity of sulfate-reducing bacteria inhabiting the rhizosphere of Phragmites australis in Lake Velencei (Hungary) revealed by a combined cultivation-based and molecular approach. Microb Ecol 56(1):64–75PubMedGoogle Scholar
  297. Vorholt JA, Hafenbradl D, Stetter KO, Thauer RK (1997) Pathways of autotrophic CO2 fixation and of dissimilatory nitrate reduction to N2O in Ferroglobus placidus. Arch Microbiol 167(1):19–23PubMedGoogle Scholar
  298. Wang G, Zhang R, Gomez ME, Yang L, Zamora ML, Hu M, Li J (2016) Persistent sulfate formation from London fog to Chinese haze. Proc Natl Acad Sci 113(48):13630–13635PubMedGoogle Scholar
  299. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368Google Scholar
  300. Warthmann R, Cypionka H (1990) Sulfate transport in Desulfobulbus propionicus and Desulfococcus multivorans. Arch Microbiol 154(2):144–149Google Scholar
  301. Warthmann R, Van Lith Y, Vasconcelos C, McKenzie JA, Karpoff AM (2000) Bacterially induced dolomite precipitation in anoxic culture experiments. Geology 28(12):1091–1094Google Scholar
  302. Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The prokaryotes. Springer, New York, pp 3352–3378Google Scholar
  303. Widdel F, Rabus R (2001) Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr Opin Biotechnol 12(3):259–276PubMedGoogle Scholar
  304. Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920PubMedGoogle Scholar
  305. Wilson LG, Asahi T, Bandurski RS (1961) Yeast sulfate-reducing system I. Reduction of sulfate to sulfite. J Biol Chem 236(6):1822–1829PubMedGoogle Scholar
  306. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci 74(11):5088–5090PubMedGoogle Scholar
  307. Woese CR, Magrum LJ, Fox GE (1978) Archaebacteria. J Mol Evol 11(3):245–252PubMedGoogle Scholar
  308. Wolf J, Stark H, Fafenrot K, Albersmeier A, Pham TK, Müller KB, Kouril T (2016) A systems biology approach reveals major metabolic changes in the thermoacidophilic archaeon Sulfolobus solfataricus in response to the carbon source L-fucose versus D-glucose. Mol Microbiol 102(5):882–908PubMedGoogle Scholar
  309. Yant WP, Schrenk HH, Patty FA (1936) A plant study of urine sulfate determinations as a measure of benzene exposure. J Ind Hyg Toxicol 18:349–356Google Scholar
  310. Ye J, Zhang R, Nielsen S, Joseph SD, Huang D, Thomas T (2016) A combination of biochar–mineral complexes and compost improves soil bacterial processes, soil quality, and plant properties. Front Microbiol 7:372.  https://doi.org/10.3389/fmicb.2016.00372CrossRefPubMedPubMedCentralGoogle Scholar
  311. Yoon S, Sanford RA, Löffler FE (2013) Shewanella spp. use acetate as an electron donor for denitrification but not ferric iron or fumarate reduction. Appl Environ Microbiol 79(8):2818–2822PubMedPubMedCentralGoogle Scholar
  312. Zellner G, Messner P, Winter J, Stackebrandt E (1998) Methanoculleus palmolei sp. nov., an irregularly coccoid methanogen from an anaerobic digester treating wastewater of a palm oil plant in North-Sumatra, Indonesia. Int J Syst Evol Microbiol 48(4):1111–1117Google Scholar
  313. Zhang Y, Wang X, Zhen Y, Mi T, He H, Yu Z (2017) Microbial diversity and community structure of sulfate-reducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Front Microbiol 8:2133PubMedPubMedCentralGoogle Scholar
  314. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4PubMedPubMedCentralGoogle Scholar
  315. Zillig W, Stetter KO, Prangishvilli D, Schäfer W, Wunderl S, Janekovic D, Palm P (1982) Desulfurococcaceae, the second family of the extremely thermophilic, anaerobic, sulfur-respiring Thermoproteales. Zentralblatt Für Bakteriologie Mikrobiologie Und Hygiene: I. Abt. Originale C: Allgemeine, Angewandte Und Ökologische Mikrobiologie 3(2):304–317Google Scholar
  316. Zinder SH, Brock TD (1978) Dimethyl sulphoxide reduction by micro-organisms. Microbiology 105(2):335–342Google Scholar
  317. Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1988) Investigations on microbial sulfur respiration. Arch Microbiol 150(1):72–77Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Prem Chandra
    • 1
  • Enespa
    • 2
  • Rajesh Kumar
    • 3
  • Jameel Ahmad
    • 3
  1. 1.Department of Environmental MicrobiologyBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  2. 2.Department of Plant Pathology, School of Agriculture, Sri Mahesh Prasad Degree CollegeUniversity of LucknowLucknowIndia
  3. 3.Department of Zoology, Gandhi Faizam CollegeMahatama Jyotiba Phule Rohilkhand UniversityBareillyIndia

Personalised recommendations