Bioremediation of Cultural Heritage: Removal of Organic Substances

  • Chanda Parulekar-Berde
  • Rishikesh R. Surve
  • Sagar P. Salvi
  • Prachiti P. Rawool
  • P. Veera Brahma Chari
  • Berde Vikrant B. 


Cultural heritage (CH) deterioration is the combined effect of environmental factors and biological activities. Microorganisms grow on the art form establishing themselves and utilizing the available sources of carbon and energy. Consequences of these activities are seen in the form of damaged and deteriorating art forms, sometimes completely destroyed. Many methods are available for the cleaning and restoration of the damaged cultural heritage artwork. The use of microorganisms, i.e. biocleaning, amongst these, is the most effective and advantageous. The presence of organic matter in or on the CH, such as paintings, frescos and statues, renders them prone to microbial growth. The source of organic matter may be the activities of microorganisms growing on the art or organic matter used for restoration, for example, glue on paintings, or the composition of the art form itself such as parchment paper. Thus, the growth of microorganisms further degrades the surface of the CH. These artistic pathologies can be treated with help of viable microbial cultures. Selective isolation of non-pathogenic organic matter degraders is the starting point in biorestoration process. The potential of microorganisms for actual bioremediation of deteriorated cultural heritage materials is increasingly being unveiled and is the challenging field of research for aspirants.


Bioremediation Cultural heritage Monuments Paintings Biocleaning Organic substances Microorganisms 



The authors are thankful to their respective institutions for encouragement and support.


  1. Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) Biodegradation, the bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65:1004–1011Google Scholar
  2. Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459PubMedGoogle Scholar
  3. Arutchelvan V, Kanakasabai V, Nagarajan S, Muralikrishnan V (2005) Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J Hazard Mater 127:238–243PubMedGoogle Scholar
  4. Atlas RC, Rude PO (1988) Complete oxidation of solid phase sulfides by manganese and bacteria in anoxic marine sediment. Geochim Cosmochim Acta 52:751–766Google Scholar
  5. Barbabietola N, Tasso F, Grimald M, Alisi C, Chiavarini S, Marconi P et al (2012) Microbe-based technology for a novel approach to conservation and restoration. EAI Speciale II. Knowl Diagn Preserv Cult Herit 2012:69e76Google Scholar
  6. BaumgaÈ rtner M, Sameluck F, Bock E, Conrad R (1991) Production of nitric oxide by ammonium-oxidizing bacteria colonizing building stones. FEMS Microbiol Ecol 8:95–100Google Scholar
  7. Bellucci R, Cremonesi P (1994) L’uso degli enzimi nella conservazione e nel restauro dei dipinti. Kermes 21:45–64Google Scholar
  8. Bellucci R, Cremonesi P, Pignagnoli G (1999) A preliminary note on the use of enzymes in conservation: the removal of aged acrylic resin coatings with lipase. Stud Conserv 44:278–281Google Scholar
  9. Böke H, Gokturk EH, Caner-Saltik EN, Demirci S (1999) Effect of airborne particle on SO2-calcite reaction. Appl Surf Sci 140:70–82Google Scholar
  10. Bonomi R (1994) Utilizzo degli enzimi per il restauro di una scultura in terracotta policroma. OPD Restauro 6:101–107Google Scholar
  11. Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5:155PubMedPubMedCentralGoogle Scholar
  12. Bosch-Roig P, Regidor-Ros JL, Montes-Estellés R (2013a) Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int Biodeterior Biodegrad 84:266–274Google Scholar
  13. Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Montes-Estelles RM (2013b) Biocleaning of animal glue of wall paintings by Pseudomonas stutzeri. Chim Oggi-Chem Today 31:50–53Google Scholar
  14. Bosch-Roig P, Lustrato G, Zanardini E, Ranalli G (2014) Biocleaning of cultural heritage stone surfaces and frescoes: which delivery system can be the most appropriate? Ann Microbiol 65:1227–1241Google Scholar
  15. Campani E, Casoli A, Cremoneso C, Saccani I, Signorini E (2007) In: Prato Il (ed) L’uso di agarosio e agar per la preparazione di “Gel rigidi”, vol 4. Cesmar, PadovaGoogle Scholar
  16. Caneva G, Nugari MP, Salvadori O (1991) Environmental factors in biodeterioration. In: Caneva G, Nugari MP, Salvadori O (eds) Biology in the conservation of works of art. ICCROM, Rome, pp 3–24Google Scholar
  17. Capodicasa S, Fedi S, Porcelli AM, Zannoni D (2010) The microbial community dwelling on a biodeteriorated 16th century painting. Int. Biodeterior Biodegrad 64:727–733Google Scholar
  18. Cappitelli F (2016) Biocleaning of cultural heritage surfaces. Open Conf Proc J 7:65–69Google Scholar
  19. Cappitelli F, Zanardini E, Sorlini C (2004) The biodeterioration of synthetic resins used in conservation. Macromol Biosci 4:399–406PubMedGoogle Scholar
  20. Cappitelli F, Zanardini E, Toniolo L, Abbruscato P, Ranalli G, Sorlini C (2005) Bioconservation of the marble base of the Pietà Rondanini by Michelangelo Buonarroti. J Appl Microbiol 7:06675Google Scholar
  21. Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24:350–354PubMedGoogle Scholar
  22. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675PubMedPubMedCentralGoogle Scholar
  23. Caselli E, Pancaldi S, Baldisserotto C, Petrucci F, Impallaria A, Volpe L, D’Accolti M, Soritti I, Coccagna M, Sassu G et al (2018) Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS One 13:e0207630PubMedPubMedCentralGoogle Scholar
  24. Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis-the microbiogeologist point of view. Sediment Geol 126:9–23Google Scholar
  25. Chen J, Zhang Y, Du GC, Hua ZZ, Zhu Y (2007) Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzym Microb Technol 40:1686–1691Google Scholar
  26. Ciferri O (1999) Microbial degradation of paintings. Appl Environ Microbiol 65:879–885PubMedPubMedCentralGoogle Scholar
  27. Crispim C, Gaylarde P, Gaylarde C (2003) Algal and cyanobacterial biofilms on calcareous historic buildings. Curr Microbiol 46:79–82PubMedGoogle Scholar
  28. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24:36Google Scholar
  29. Doménech-Carbó MT, Yusá-Marco DJ (2006) Aspectos físicoquímicos de la pintura mural y su limpieza. Polytechnic University of Valencia, ValenciaGoogle Scholar
  30. El-Metwally AA, Ramadan AB (2005) The role of air pollutants and sewage waste in acceleration of degradation of the Islamic cultural heritage of Cairo. In: Comparative risk assessment and environmental decision making, vol 38, part 3. Springer, Dordrecht, pp 363–370Google Scholar
  31. Gauri LK, Chowdhury AN, Kulshreshtha NP, Punuru AR (1989) The sulfation of marble and the treatment of gypsum crusts. Stud Conserv 34:201–206Google Scholar
  32. Gauri LK, Parks L, Jaynes J, Atlas R (1992) Removal of sulphated crust from marble using sulphate-reducing bacteria. In: Robin GM (ed) Stone cleaning and the nature, soiling and decay mechanisms of stone. Proceedings of the International Conference, 14 to 16 April 1992. Donhead Publishing Ltd, Webster, Edinburgh, pp 160–165Google Scholar
  33. Gaylarde C, Gaylarde P (2002) Biodeterioration of historic buildings in Latin America. DBMC 9:171–180Google Scholar
  34. Gaylarde CC, Rodrıguez CH, Navarro NY, Ortega MB (2012) Microbial biofilms on the sandstone monuments of the Angkor Wat Complex, Cambodia. Curr Microbiol 64:85–92PubMedGoogle Scholar
  35. Giannantonia D (2008) Molecular characterization of microbial communities fouling concrete infrastructures. Dissertation, Georgia Institute of TechnologyGoogle Scholar
  36. Gioventù E, Lorenzi P (2013) Bio-removal of black Crust from marble surface: comparison with traditional methodologies and application on a sculpture from the Florence’s English Cemetery. Proc Chem 8:123–129Google Scholar
  37. Gioventù E, Lorenzi PF, Villa F, Sorlini C, Rizzi M, Cagnini A et al (2011) Comparing the bioremoval of black crusts on colored artistic lithotypes of the cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegradation 65:832–839Google Scholar
  38. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, Petersen K, Saiz-Jimenez C, Swings J (2004) Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int Biodeterior Biodegrad 53:13–24Google Scholar
  39. Heselmeyer K, Fischer U, Krumbein WE, Warsheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. BIOforum 1:89Google Scholar
  40. Jroundi F, Gomez-Suaga P, Jimenez-Lopez C, Gonzalez-Munoz MT, Fernandez-Vivas MA (2012) Stone isolated carbonatogenic bacteria as inoculants in bioconsolidation treatments for historical limestone. Sci Total Environ 425:89–98PubMedGoogle Scholar
  41. Jurado V, Laiz L, Rodriguez-Nava V, Boiron P, Hermosin B, Sanchez-Moral S et al (2010) Pathogenic and opportunistic microorganisms in caves. Int J Speleol 39:15–24Google Scholar
  42. Kapsalas P, Zervakis M, Maravelaki-Kalaitzaki P (2007) Evaluation of image segmentation approaches for non-destructive detection and quantification of corrosion damage on stonework. Corros Sci 49:4415–4442Google Scholar
  43. Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli gardens (Florence, Italy). J Appl Phycol 12:427–433Google Scholar
  44. Leonardi R (2005) Nuclear physics and painting: sub-topic of the wide and fascinating field of science and art. Nucl Phys A 752:659–674Google Scholar
  45. Lopez-Miras MD, Martin-Sanchez I, Yebra-Rodriguez A, Romero-Noguera J, Bolivar-Galiano F, Ettenauer J, Sterflinger K, Pinar G (2013) Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PLoS One 8:e80198PubMedCentralGoogle Scholar
  46. Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int. Biodeterior Biodegrad 69:51–61Google Scholar
  47. Macedo M, Miller A, Dionisio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490PubMedGoogle Scholar
  48. Makes F (1988) Enzymatic consolidation of the portrait of Rudolf II as _Vertumnus_ by Giuseppe Arcimboldo with a new multi-enzyme preparation isolated from Antarctic Krill (Euphasia superba). Acta Universitatis Gotheburg 23:98–110Google Scholar
  49. Matteini M, Mazzeo R (2009) Structure of panel and canvas paintings. In: Pinna D, Galeotti M, Mazzeo R (eds) Scientific examination for the investigation of paintings, a handbook for conservator-restorers. Centro Di, Firenze, pp 11–20Google Scholar
  50. May E, Webster AM, Inkpen R, Zamarreno D, Kuever J, Rudolph C, Warscheid T, Sorlini C, Cappitelli F, Zanardini E et al (2008) The biobrush project for bioremediation of heritage stone. In: May E, Jones M, Mitchell J (eds) Heritage microbiology and science: microbes, monuments and maritime materials. RSC Publishing, Cambridge, pp 76–93Google Scholar
  51. Mazzoni M, Alisi C, Tasso F, Cecchini A, Marconi P, Sprocati AR (2014) Laponite micro-packs for the selective cleaning of multiple coherent deposits on wall paintings: the case study of Casina Famese on the Palatine Hill (Rome-Italy). Int Biodeterior Biodegrad 94:1–11Google Scholar
  52. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451Google Scholar
  53. McNamara CJ, Breuker M, Helms M, Perry TD, Mitchell R (2004) Biodeterioration of Incralac used for the protection of bronze monuments. J Cult Herit 5:361–364Google Scholar
  54. Mitchell R, Gu JD (2000) Changes in the biofilm microflora of limestone caused by atmospheric pollutants. Int Biodeterior Biodegradation 46:299–303Google Scholar
  55. Montes R, Hernández E (1999) Estudio de la contaminación microbiológica en la pinturas murales de la Basílica de la Virgen de los Desamparados de Valencia. In: Roig P, Bosch I (eds) Restauración de Pintura Mural aplicada a la Basílica de al Virgen de los Desamparados de Valencia. Universidad Politécnica de Valencia, Valencia, pp 201–215Google Scholar
  56. Moropoulou A, Bisbikou K, Torfs K, Van Grieken R, Zezza F, Macri F (1998) Origin and growth of weathering crusts on ancient marbles in industrial atmosphere. Atmos Environ 32:967–982Google Scholar
  57. Negi A, Sarethy IP (2019) Microbial biodeterioration of cultural heritage: events, colonization, and analyses. Microb Ecol 78:1014PubMedGoogle Scholar
  58. Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I et al (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Total Environ 364:272–283PubMedGoogle Scholar
  59. Ortega-Calvo JJ, Naturales R, Saiz-Jiminez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28:165–185Google Scholar
  60. Pavic A, Ilic-Tomic T, Pacevski A, Nedeljkovic T, Vasiljevic B, Moric I (2015) Diversity and biodeteriorative potential of bacterial isolates from deteriorated modern combined-technique canvas painting. Int Biodeterior Biodegrad 97:40–50Google Scholar
  61. Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60:1–14PubMedGoogle Scholar
  62. Ranalli G, Sorlini C (2008) Bioremediation. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage. Bioremediation and conservation. The Getty Conservation Institute, Los Angeles, pp 340–346Google Scholar
  63. Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1996) The use of microorganisms for the removal of nitrates and organic substances on artistic stoneworks. In: Riederer J (ed) Proceedings 8th international congress on deterioration and conservation of stone. Mo¨ller, Berlin, pp 1415–1420Google Scholar
  64. Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulphates on artistic stoneworks. Int Biodeterior Biodegrad 40:255–261Google Scholar
  65. Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulfates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. Springer, New YorkGoogle Scholar
  66. Ranalli G, Belli C, Baracchini C, Caponi G, Pacini P, Zanardini E, Sorlini C (2003) Deterioration and bioremediation of frescoes: a case-study. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. A.A. Balkema Publishers, Lisse, pp 243–246Google Scholar
  67. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83PubMedGoogle Scholar
  68. Ranalli G, Zanardini E, Sorlini C (2009) Biodeterioration—including cultural heritage. In: Schaechter M (ed) Encyclopedia of microbiology. Academic Press, Oxford, pp 191–205Google Scholar
  69. Ranalli G, Zanardini E, Andreotti A, Colombini MP, Corti C, Bosch-Roig P, De Nuntiis P, Lustrato G, Mandrioli P, Rampazzi L et al (2018) Hi-tech restoration by two-steps biocleaning process of Triumph of Death fresco at the Camposanto Monumental Cemetery (Pisa, Italy). J Appl Microbiol 125:800–812PubMedGoogle Scholar
  70. Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G, Giantomassi G, Zari D et al (2019) Onsite advanced biocleaning system on historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126:1785–1796PubMedGoogle Scholar
  71. Saiz-Jimenez C (1995) Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11:161–175Google Scholar
  72. Saiz-Jimenez C (1997) Biodeterioration vs. biodegradation: the role of microorganisms in the removal of pollutants deposited on historic buildings. Int Biodeterior Biodegrad 24:225–232Google Scholar
  73. Saiz-Jimenez C, Laiz L (2000) Occurrence of halotolerant/halophilic bacterial communities in deteriorated monuments. Int Biodeterior Biodegrad 46:319–326Google Scholar
  74. Saiz-Jimenez C, Samson RA (1981) Biodegradación de obras de arte. Hongos implicados en la degradación de los frescos del monasterio de la Rábida (Huelva). Botanica Macaronesica 8–9:255–264Google Scholar
  75. Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161PubMedGoogle Scholar
  76. Sanmartín P, Bosch-Roig P (2019) Biocleaning to remove graffiti: a real possibility? advances towards a complete protocol of action. Coatings 9:104Google Scholar
  77. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139PubMedGoogle Scholar
  78. Sofritti I, D’Accolti M, Lanzoni L, Volta A, Bisi M, Mazzacane S, Caselli E (2019) The potential use of microorganisms as restorative agents: an update. Sustainability 11:3853–3870Google Scholar
  79. Sorlini C, Cappitelli F (2008) The application of viable bacteria for the biocleaning of cultural heritage surfaces. Coalition 15:18e20Google Scholar
  80. Sorlini C, Ranalli G, Zanardini E (2010) Stone bioconservation. In: Mitchell R, McNamara CJ (eds) Cultural heritage microbiology: fundamental studies in conservation science. ASM Press, Washington, DC, pp 291–303Google Scholar
  81. Spieck E, Meincke M, Bock E (1992) Taxonomic diversity of Nitrosovibrio strains isolated from building sandstones. FEMS Microbiol Ecol 102:21–26Google Scholar
  82. Stulik D (2000) Paint. In: WSJ T, Mayer JW (eds) The science of paintings. Springer, New York, pp 12–25Google Scholar
  83. Taft WSJ, Mayer JW (2000) The structure and analysis of paintings. In: WSJ T, Mayer JW (eds) The science of paintings. Springer, New York, pp 1–11Google Scholar
  84. Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Bio remediated reinforcement of weathered calcareous stones. J Cult Herit 7:49e55Google Scholar
  85. Troiano F, Guiotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Sorlini C, Cappitelli F (2013) Successful combination of chemical and biological treatments for the cleaning of stone artworks. Int Biodeterior Biodegrad 85:294–304Google Scholar
  86. Troiano F, Vicini S, Gioventù E (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Degrad Stab 107:321–327Google Scholar
  87. Vergès-Belmin V (1996) Towards a definition of common evaluation criteria for the cleaning of porous building materials: a review. Sci Technol Cult Herit 5:69–83Google Scholar
  88. Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126Google Scholar
  89. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368Google Scholar
  90. Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24:255–260PubMedGoogle Scholar
  91. Wolbers R (2007) Cleaning painted surface: aqueous methods. Archetype Books, LondonGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chanda Parulekar-Berde
    • 1
  • Rishikesh R. Surve
    • 2
  • Sagar P. Salvi
    • 1
  • Prachiti P. Rawool
    • 1
  • P. Veera Brahma Chari
    • 3
  • Berde Vikrant B. 
    • 4
  1. 1.Department of MicrobiologyGogate Jogalekar CollegeRatnagiriIndia
  2. 2.Department of Chemistry, ArtsCommerce and Science CollegeLanjaIndia
  3. 3.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  4. 4.Department of ZoologyArts, Commerce and Science CollegeLanjaIndia

Personalised recommendations