Advertisement

Microorganisms and Their Enzymes as Biorestoration Agents

  • Chanda Parulekar-Berde
  • Sachin S. Ghoble
  • Sagar P. Salvi
  • Vikrant B. Berde
Chapter
  • 37 Downloads

Abstract

Cultural heritage (CH) includes art forms such as paintings, frescoes, stoneworks, etc. These are exposed to the combined effects of environmental factors as well as biological activities. The presence of an organic matter in or on the CH such as paintings, frescoes and statues renders them prone to microbial growth. The organic matter used for restoration, for example, glue on paintings and the chemical composition of the art form, serves as a source of carbon and energy, thus allowing the growth of microorganisms. This further degrades the surface of the CH. Consequences of these activities are seen in the form of damaged and deteriorating art forms, which sometimes are totally destroyed. Many methods are available for the cleaning and restoration of the damaged cultural heritage artwork. Use of microorganisms and their enzymes, i.e. biocleaning, amongst these, is the most effective and advantageous. These artistic pathologies can be treated with the help of viable microbial cultures as well as the enzymes produced by microorganisms. Selective isolation of non-pathogenic organic matter degraders and efficient enzyme producers is the starting point in the biorestoration process, followed by the purification of enzymes and their application for biocleaning. This chapter gives a glimpse of the new revolution in the restoration of cultural art forms using enzymes.

Keywords

Cultural heritage Monuments Paintings Biocleaning Enzymes Microorganisms 

Notes

Acknowledgements

The authors are thankful to their respective institutions for the encouragement and support.

References

  1. Alfano G et al (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: the case-study of Matera cathedral after six years from the treatment. Int Biodeterior Biodegradation 65:1004–1011Google Scholar
  2. Angumeenal AR, Venkappayya D (2013) An overview of citric acid production. LWT Food Sci Technol 50:367–370Google Scholar
  3. Antonioli P, Zapparoli G, Abbruscato P, Sorlini C, Ranalli G, Righetti PG (2005) Art-loving bugs: the resurrection of Spinello Aretino from Pisa’s cemetery. Proteomics 5:2453–2459PubMedGoogle Scholar
  4. Arutchelvan V, Kanakasabai V, Nagarajan S, Muralikrishnan V (2005) Isolation and identification of novel high strength phenol degrading bacterial strains from phenol-formaldehyde resin manufacturing industrial wastewater. J Hazard Mater 127:238–243PubMedGoogle Scholar
  5. Atlas RM, Chowdhury AN, Gauri KL (1988) Microbial calcification of gypsum-rock and sulfated marble. Stud Conserv 33(3):149–153Google Scholar
  6. Barbabietola N, Tasso F, Alisi C, Marconi P, Perito B, Pasquariello G, Sprocati AR (2016) A safe microbe-based procedure for a gentle removal of aged animal glues from ancient paper. Int Biodeterior Biodegradation 109:53–60Google Scholar
  7. Bellucci R, Cremonesi P (1994) L’usodeglienziminellaconservazione e nelrestaurodeidipinti. The use of enzymes in the conservation and restoration of paintings. Kermes arte e tecnicadelrestauro 21:45–64Google Scholar
  8. Bellucci R, Cremonesi P, Pignagnoli G (1999) A preliminary note on the use of enzymes in conservation. The removal of aged acrylic resin coatings with lipase. Stud Conserv 44:278–281Google Scholar
  9. Biavati B, Sorlini C (2008) Microbiologiaagroambientale. Ambrosiana, Milano, p 684Google Scholar
  10. Bonomi R (1994) Utilizzodeglienzimi per ilrestauro di unascultura in terracotta policroma. OPD Restauro 6:101–107Google Scholar
  11. Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246:527–529Google Scholar
  12. Bosch-Roig P, Regidor-Ros JL, Montes-Estellés R (2013a) Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int Biodeterior Biodegrad 84:266–274Google Scholar
  13. Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Montes-Estellés RM (2013b) Biocleaning of animal glue on wall paintings by Pseudomonas stutzeri. Chin Oggi/Chem Today 31(1):50–53Google Scholar
  14. Caneva G, Nugari MP, Salvadori O (1991) Environmental factors in biodeterioration. In: Caneva G, Nugari MP, Salvadori O (eds) Biology in the conservation of works of art. ICCROM—SintesiGraficas.r.l., Rome, pp 3–24Google Scholar
  15. Capodicasa S, Fedi S, Porcelli AM, Zannoni D (2010) The microbial community dwelling on a biodeteriorated 16th century painting. Int Biodeterior Biodegrad 64:727–733Google Scholar
  16. Cappitelli F, Zanardini E, Toniolo L, Abbruscato P, Ranalli G, Sorlini C (2005) Bioconservation of the marble base of the Pietà Rondanini by Michelangelo Buonarroti. J Appl Microbiol 7:06675Google Scholar
  17. Cappitelli F, Principi P, Sorlini C (2006) Biodeterioration of modern materials in contemporary collections: can biotechnology help? Trends Biotechnol 24(8):350–354PubMedGoogle Scholar
  18. Cappitelli F, Toniolo L, Sansonetti A, Gulotta D, Ranalli G, Zanardini E, Sorlini C (2007) Advantages of using microbial technology over traditional chemical technology in removal of black crusts from stone surfaces of historical monuments. Appl Environ Microbiol 73:5671–5675PubMedPubMedCentralGoogle Scholar
  19. Carta FS, Soccol CR, Ramos LP, Fontana JD (1999) Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresour Technol 68:23–28Google Scholar
  20. Caselli E, Pancaldi S, Baldisserotto C, Petrucci F, Impallaria A, Volpe L, D’Accolti M, Soritti I, Coccagna M, Sassu G et al (2018) Characterization of biodegradation in a 17th century easel painting and potential for a biological approach. PLoS One 13:e0207630PubMedPubMedCentralGoogle Scholar
  21. Castanier S, Le Metayer-Levrel G, Orial G, Loubiere JF, Perthuisot JP (2000) Carbonatogenesis and applications to preservation and restoration of historic property. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art. Kluwer Academic/Plenum Publishers, Amsterdam, pp 203–218Google Scholar
  22. Chen J, Zhang Y, Du GC, Hua ZZ, Zhu Y (2007) Biodegradation of polyvinyl alcohol by a mixed microbial culture. Enzym Microb Technol 40(7):1686–1691Google Scholar
  23. Cremonesi P (2002) L’usodeglienziminellapulitura di operepolicrome. Il Prato, PadovaGoogle Scholar
  24. De la Rosa-García C, Ortega-Morales O, Claire Gaylarde C, Beltrán-García M, Quintana-Owen P, Reyes-Estebanez M (2011) Influence of fungi in the weathering of limestone of Mayan monuments. Rev Mex Micol 33:43–51Google Scholar
  25. Decoux S (2002) Enzymes used for adhesive removal in paper conservation: a literature review. J Soc Arch 23:187–195Google Scholar
  26. Fernandes P (2006) Applied microbiology and biotechnology in the conservation of stone cultural heritage materials. Appl Microbiol Biotechnol 73:291–296PubMedGoogle Scholar
  27. Ferrer MR, Quevedo-Sarmiento J, Rivadeneira MA, Bejar V, Delgadoand R, Ramos-Cormenzana A (1988) Calcium carbonate precipitation by two groups of moderately halophilic microorganisms at different temperatures and salt concentrations. Curr Microbiol 17:221–227Google Scholar
  28. Gauri LK, Chowdhury AN, Kulshreshtha NP, Punuru AR (1989) The sulfation of marble and the treatment of gypsum crusts. Stud Conserv 34:201–206Google Scholar
  29. Gauri LK, Parks L, Jaynes J, Atlas R (1992) Removal of sulphated crust from marble using sulphate-reducing bacteria, pp 160–165. In: Robin GM (ed) Stone cleaning and the nature, soiling and decay mechanisms of stone. Proceedings of the international conference, 14 to 16 April 1992. Donhead Publishing Ltd., Webster, EdinburghGoogle Scholar
  30. Gaylarde CC, Rodrıguez CH, Navarro NY, Ortega MB (2012) Microbial biofilms on the sandstone monuments of the Angkor Wat complex, Cambodia. Curr Microbiol 64:85–92PubMedGoogle Scholar
  31. Giacomucci L, Toja F, Sanmartín P, Toniolo L, Prieto B, Villa F, Cappitelli F (2012) Degradation of nitrocellulose-based paint by Dedesulfuricans ATCC 13541. Biodegradation 23:705–716PubMedGoogle Scholar
  32. Gioventù E, Lorenzi PF, Villa F, Sorlini C, Rizzi M, Cagnini A et al (2011) Comparing the bioremoval of black crusts on colored artistic lithotypes of the cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegradation 65:832–839Google Scholar
  33. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, Petersen K, Saiz-Jimenez C, Swings J (2004) Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int Biodeterior Biodegrad 53:13–24Google Scholar
  34. Hamed SAM (2012) A preliminary study on using enzymes in cleaning archaeological wood. J Archaeol Sci 39(7):2515–2520Google Scholar
  35. Heselmeyer K, Fischer U, Krumbein WE, Warsheid T (1991) Application of Desulfovibrio vulgaris for the bioconversion of rock gypsum crusts into calcite. Bioforum 1:89Google Scholar
  36. HrdlickovaKuckova S, CrhovaKrizkova M, Pereira CLC, Hynek R, Lavrova O, Busani T, Branco LC, Sandu ICA (2014) Assessment of green cleaning effectiveness on polychrome surfaces by MALDI-TOF mass spectrometry and microscopic imaging. Microsc Res Tech 77(8):574–585Google Scholar
  37. Jeszeová L, Bauerová-Hlinková V, Baráth P, Puškárová A, Bučková M, Kraková L, Pangallo D (2018) Biochemical and proteomic characterization of the extracellular enzymatic preparation of Exiguobacterium undae, suitable for efficient animal glue removal. Appl Microbiol Biotechnol 102:6525–6536PubMedGoogle Scholar
  38. Kawamura D, Furuhashi M, Saito O, Matsui H(1981) Production of itaconic acid by fermentation. Jp Patent .56: 137,893 (To Iwata)Google Scholar
  39. Kembhavi AA, Kulkarni A, Pant A (1993) Salt-tolerant and thermostable alkaline protease from Bacillus subtilis. NCIM no.64. Appl Biochem Biotechnol 38:83–92PubMedGoogle Scholar
  40. Khan I, Qayyum S, Maqbool F, Mujaddad-ur-Rehman, Hayat A, Farooqui SM (2017) Microbial organic acids production, biosynthetic mechanism and applications. Indian J Geo Mar Sci 46:2165–2174Google Scholar
  41. Konkol N, Macnamara C, Sembrat J, Rabinowitz M, Mitchell R (2009) Enzymatic decoloration of bacterial pigmented from culturally significant marble. J Cult Herit 10:362–366Google Scholar
  42. Kraková L, Šoltys K, Puškárová A, Bučková M, Jeszeová L, Kucharík M, Budiš J, Orovčík L, Szemes T, Pangallo D (2018) The microbiomes of a XVIII century mummy from the castle of Krásna Hôrka (Slovakia) and its surrounding environment. Environ Microbiol 20:3294–3308PubMedGoogle Scholar
  43. Kuenz A, Gallenmuller Y, Willke T, Vorlop KD (2012) Microbial production of itaconic acid: developing a stable platform for high product concentrations. Appl Microbiol Biotechnol 96(5):1209–1216PubMedGoogle Scholar
  44. Lamenti G, Tiano P, Tomaselli L (2000) Biodeterioration of ornamental marble statues in the Boboli gardens (Florence, Italy). J Appl Phycol 12:427–433Google Scholar
  45. Li A, Punt P (2013) Industrial production of organic acids by Fungi. In: Gupta V, Schmill M, Mazutti M, Mäki M, Tuohy M (eds) Applied microbiology engineering. Taylor and Francis Group, London, pp 52–74Google Scholar
  46. Liaud N, Giniés C, Navarro D, Fabre N, Crapart S, Gimbert I, Levasseur A, Raouche S, Sigoillot JC (2014) Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biol Biotechnol 1:1PubMedCentralGoogle Scholar
  47. Liu LM, Li Y, Zhu Y, Du GC, Chen J (2007) Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng 9:21–29PubMedGoogle Scholar
  48. López-Miras MDM, Martín-Sánchez I, Yebra-Rodríguez Á, Romero-Noguera J, Bolívar-Galiano F, Ettenauer J et al (2013a) Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PLoS One 8(11):e80198PubMedCentralGoogle Scholar
  49. López-Miras M, Piñar G, Romero-Noguera J, Bolívar-Galiano FC, Ettenauer J, Sterflinger K et al (2013b) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia 29(2):301–314PubMedGoogle Scholar
  50. Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61Google Scholar
  51. Maier RM, Pepper IL, Gerba CP (2000) Environmental microbiology. Elsevier, San Diego, p 585Google Scholar
  52. Makes F (1988) Enzymatic consolidation of the portrait of Rudolf II with a multienzyme preparation isolated from Antarctic krill, Acta Universitatis Gothoburgensis – Goteborg Studies on Conservation, 1, Goteborg, SwedenGoogle Scholar
  53. May E, Webster AM, Inkpen R, Zamarreno D, Kuever J, Rudolph C, Warscheid T, Sorlini C, Cappitelli F, Zanardini E et al (2008) The biobrush project for bioremediation of heritage stone. In: May E, Jones M, Mitchell J (eds) Heritage microbiology and science: microbes, monuments and maritime materials. RSC Publishing, Cambridge, UK, pp 76–93Google Scholar
  54. Mayer C, Moritz R, Kirschner C, Borchard W, Maibaum R, Wingender J, Flemming HC (1999) The role of intermolecular interactions: studies on model systems for bacterial biofilms. Int J Biol Macromol 26:3–16PubMedGoogle Scholar
  55. McNamara CJ, Mitchell R (2005) Microbial deterioration of historic stone. Front Ecol Environ 3:445–451Google Scholar
  56. McNamara CJ, Breuker M, Helms M, Perry TD, Mitchell R (2004) Biodeterioration of Incralac used for the protection of bronze monuments. J Cult Herit 5:361–364Google Scholar
  57. Micheli L, Mazzuca C, Palleschi A, Palleschi G (2016) Development of a diagnostic and cleaning tool for paper artworks: a case of study. Microchem J 126:32–41Google Scholar
  58. Nuhoglu Y, Oguz E, Uslu H, Ozbek A, Ipekoglu B, Ocak I et al (2006) The accelerating effects of the microorganisms on biodeterioration of stone monuments under air pollution and continental-cold climatic conditions in Erzurum, Turkey. Sci Total Environ 364:272–283PubMedGoogle Scholar
  59. Nwodo U, Green E, Okoh A (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015PubMedPubMedCentralGoogle Scholar
  60. Ortega-Calvo JJ, Naturales R, Saiz-Jiminez C (1991) Biodeterioration of building materials by cyanobacteria and algae. Int Biodeterior 28:165–185Google Scholar
  61. Palla F, Cammarata M, Trapani MR, Billeci N, Sebastianelli M, Salamone M, Ghersi G (2012) Removal of old protein layers from surfaces of works of art by new enzymes, 36th International Symposium on the Conservation and Restoration of Cultural Properties, pp 78–79, 5–7 Dicembre, Tokyo, JapanGoogle Scholar
  62. Palla F, Cammarata M, Trapani MR, Ghersi G, Salamone M, Sebatianelli M (2013) Novel proteases from marine organisms with potential interest in restoration procedure. In: Science and technology for the conservation of cultural heritage. CRC Press, Taylor and Francis GroupGoogle Scholar
  63. Palla F, Barresi G, Giordano A, Schiavone S, Trapani MR, Rotolo V, Parisi MG, Cammarata M (2016) Cold-active molecules for a sustainable preservation and restoration of historic-artistic manufacts. Int J Conserv Sci 7:239–246Google Scholar
  64. Pangallo D, Kraková L, Chovanová K, Šimonovičová A, De Leo F, Urzì C (2012) Analysis and comparison of the microflora isolated from fresco surface and from surrounding air environment through molecular and biodegradative assays. World J Microbiol Biotechnol 28:2015–2027PubMedGoogle Scholar
  65. Papagianni M (2007) Advances in citric acid fermentation by aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25(3):244–263PubMedGoogle Scholar
  66. Pavić A, Ilić-Tomić T, Pačevski A, Nedeljković T, Vasiljević B, Morić I (2015) Diversity and biodeteriorative potential of bacterial isolates from deteriorated modern combined-technique canvas painting. Int Biodeterior Biodegrad 97:40–50Google Scholar
  67. Petry S, Furlan S, Crepeau MJ, Cerning J, Desmazeaud M (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol 66:3427–3431PubMedPubMedCentralGoogle Scholar
  68. Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Microb Ecol 60(1):1–14PubMedGoogle Scholar
  69. Pruteanu S, Vasilache V, Sandu ICA, Budu AM, Sandu I (2014) Assessment of cleaning effectiveness for new ecological systems on ancient tempera icon by complementary microscopy techniques. Microsc Res Tech 77(12):1060–1070PubMedGoogle Scholar
  70. Ranalli G, Sorlini C (2008) Bioremediation. In: Caneva G, Nugari MP, Salvadori O (eds) Plant biology for cultural heritage. Bioremediation and conservation. The Getty Conservation Institute, Los Angeles, pp 340–346Google Scholar
  71. Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1996) The use of microorganisms for the removal of nitrates and organic substances on artistic stoneworks. In: Riederer J (ed) Proceedings 8th international congress on deterioration and conservation of stone. Möller, Berlin, pp 1415–1420Google Scholar
  72. Ranalli G, Chiavarini M, Guidetti V, Marsala F, Matteini M, Zanardini E, Sorlini C (1997) The use of microorganisms for the removal of sulphates on artistic stoneworks. Int Biodeterior Biodegrad 40:255–261Google Scholar
  73. Ranalli G, Matteini M, Tosini I, Zanardini E, Sorlini C (2000) Bioremediation of cultural heritage: removal of sulfates, nitrates and organic substances. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: bioremediation of cultural heritage: removal of sulphates, nitrates and organic substances. Springer, New YorkGoogle Scholar
  74. Ranalli G, Belli C, Baracchini C, Caponi G, Pacini P, Zanardini E, Sorlini C (2003) Deterioration and bioremediation of frescoes: a case study. In: Saiz-Jimenez C (ed) Molecular biology and cultural heritage. Balkema Publishers, Lisse, pp 243–246Google Scholar
  75. Ranalli G, Alfano G, Belli C, Lustrato G, Colombini MP, Bonaduce I, Zanardini E, Abbruscato P, Cappitelli F, Sorlini C (2005) Biotechnology applied to cultural heritage: biorestoration of frescoes using viable bacterial cells and enzymes. J Appl Microbiol 98:73–83PubMedGoogle Scholar
  76. Ranalli G, Zanardini E, Sorlini C (2009) Biodeterioration—including cultural heritage. In: Schaechter M (ed) Encyclopedia of microbiology, 3rd edn. Academic Press, Oxford, pp 191–205Google Scholar
  77. Ranalli G, Zanardini E, Andreotti A, Colombini MP, Corti C, Bosch-Roig P, De Nuntiis P, Lustrato G, Mandrioli P, Rampazzi L et al (2018) Hi-tech restoration by two-steps biocleaning process of triumph of death fresco at the Camposanto monumental cemetery (Pisa, Italy). J Appl Microbiol 125:800–812PubMedGoogle Scholar
  78. Ranalli G, Zanardini E, Rampazzi L, Corti C, Andreotti A, Colombini MP, Bosch-Roig P, Lustrato G, Giantomassi C, Zari D et al (2019) Onsite advanced biocleaning system on historical wall paintings using new agar-gauze bacteria gel. J Appl Microbiol 126:1785–1796PubMedGoogle Scholar
  79. Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzales-Munoz MT (2000) Carbonate production by Myxococcus xanthus: a possible application to protect/consolidate calcareous stones. Proceeding of the International Congress Quarry, Laboratory, Monument, Pavia, pp 493–498Google Scholar
  80. Roig PB, Ros JLR, Montes Estellés R (2013) Biocleaning of nitrate alterations on wall paintings by Pseudomonas stutzeri. Int Biodeterior Biodegrad 84:266–274Google Scholar
  81. Sabater S, Timoner X, Borrego C, Acuna V (2016) Stream biofilm responses to flow intermittency: from cells to ecosystems. Front Environ Sci 4:14Google Scholar
  82. Saiz-Jimenez C (1995) Deposition of anthropogenic compounds on monuments and their effect on airborne microorganisms. Aerobiologia 11:161–175Google Scholar
  83. Saiz-Jimenez C (1997) Biodeterioration vs biodegradation: the role of microorganisms in the removal of pollutants deposited on to historic buildings. Int Biodeterior Biodegrad 40:225–232Google Scholar
  84. Salamone M, Cuttitta A, Seidita G, Mazzola S, Bertuzzi F, Ricordi C, Ghersi G (2012) Characterization of collanolytic/proteolytic marine enzyme. Chem Eng Trans 27:1–6Google Scholar
  85. Saleem M, Brim H, Hussain S, Arshad M, Leigh MB (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26(2):151–161PubMedGoogle Scholar
  86. Sampá S, LuppiMosca AM (1989) A study of the fungi occurring on 15th century frescoes in Florence, Italy. Int Biodeterior 25(5):343–353Google Scholar
  87. Sanmartín P, Bosch-Roig P (2019) Biocleaning to remove graffiti: a real possibility? Advances towards a complete protocol of action. Coatings 9:104Google Scholar
  88. Sanmartín P, DeAraujo A, Vasanthakumar A, Mitchell R (2015) Feasibility study involving the search for natural strains of microorganisms capable of degrading graffiti from heritage materials. Int Biodeterior Biodegrad 103:186–190Google Scholar
  89. Segal J, Cooper D (1977) The use of enzymes to release adhesives. Pap Conserv 2(1):47–50Google Scholar
  90. Sorlini C, Cappitelli F (2008) The application of viable bacteria for the biocleaning of cultural heritage surfaces. Coalition 15:18e20Google Scholar
  91. Sterflinger K, Piñar G (2013) Microbial deterioration of cultural heritage and works of art – tilting at windmills? Appl Microbiol Biotechnol 97(22):9637–9646PubMedPubMedCentralGoogle Scholar
  92. Tiano P, Tosini I, Rizzi M, Tsakoma M (1996) Calcium oxalate decomposing microorganisms: a biological approach to the oxalate patinas elimination. In: Realini M, Toniolo L (eds) Proceedings of the 2nd international symposium: the oxalate films in the conservation of works of art. Editream, Milan, pp 25–27Google Scholar
  93. Tiano P, Biagiotti L, Mastromei G (1999) Bacterial bio-mediated calcite precipitation for monumental stones conservation: methods of evaluation. J Microbiol Methods 36:139–145PubMedGoogle Scholar
  94. Tiano P, Cantisani E, Sutherland I, Paget JM (2006) Bioremediated reinforcement of weathered calcareous stones. J Cult Herit 7:49e55Google Scholar
  95. Troiano F, Vicini S, Gioventù E (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Degrad Stab 107:321–327Google Scholar
  96. Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256:6550–6563Google Scholar
  97. Valentini F, Diamantia A, Carbone M, Bauer EM, Palleschi G (2012) New cleaning strategies based on carbon nanomaterials applied to the deteriorated marble surfaces: a comparative study with enzyme based treatments. Appl Surf Sci 258(16):5965–5980Google Scholar
  98. Vávrová P, Součková M (2017) Konzervace a RestaurováníNovodobýchKnihovníchFondů. Národníknihovna, Prague, p 197Google Scholar
  99. Verstraete W, Wittebolle L, Heylen K, Vanparys B, de Vos P, van de Wiele T, Boon N (2007) Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126Google Scholar
  100. Vokic D, Berovic M (2005) Use of lipase to remove oil-based overpaints. ICOM- 13th Triennial meeting 12–16 SeptemberGoogle Scholar
  101. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegradation 46:343–368Google Scholar
  102. Webster A, May E (2006) Bioremediation of weathered-building stone surfaces. Trends Biotechnol 24(6):255–260PubMedGoogle Scholar
  103. Wendelbo O (1976) The use of proteolytic enzymes in the restoration of paper and papyrus. University Library of Bergen, BergenGoogle Scholar
  104. Wendelbo O, Fosse B (1970) Protein surgery: a restoring procedure applied on paper. Restaurator 1(4):245–248Google Scholar
  105. Wolbers R (2000) Cleaning painted surfaces: aqueous methods. Archetype Publications, LondonGoogle Scholar
  106. Wolbers R (2007) Cleaning painted surface: aqueous methods. Archetype Books, LondonGoogle Scholar
  107. Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell DE (1998) In situ characterization of biofilm exopolymers involved in the accumulation of chlorinated organic. Microb Ecol 35:213–223PubMedGoogle Scholar
  108. Zanardini E, Abbruscato P, Ghedini N, Realini M, Sorlini C (2000) Influence of atmospheric pollutants on the biodeterioration of stone. Int Biodeterior Biodegrad 45:35–42Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Chanda Parulekar-Berde
    • 1
  • Sachin S. Ghoble
    • 2
  • Sagar P. Salvi
    • 1
  • Vikrant B. Berde
    • 2
  1. 1.Department of MicrobiologyGogate Jogalekar CollegeRatnagiriIndia
  2. 2.Department of ZoologyArts, Commerce and Science CollegeLanjaIndia

Personalised recommendations