Entomogenous Fungi and the Conservation of the Cultural Heritage

  • Saritha Vara
  • Manoj Kumar Karnena
  • Swathi Dash
  • R. Sanjana


Entomogenous fungi are agents of deterioration of cultural heritage. Their capabilities to survive at low water activities, thrive in microclimatic niches, etc. enable them to adapt to various conditions and colonize on cultural heritage leading to their deterioration. An understanding of the properties of these organisms will enable to propose countermeasures for protection of heritage. Material-specific cleaning and application of precise biocides are necessary for the conservation of cultural heritage. The key focus of this chapter is to apprehend the importance of cultural heritage, threats to cultural heritage and role and mechanism of entomogenous fungi in their deterioration. Moreover, an insight into conservation methods from traditional towards modern is presented with special emphasis on contribution of nanoscience for conservation of all types of cultural heritage. Probable directions for unravelling numerous conservation issues that still need to be faced in the future are also emphasized.


Entomogenous fungi Cultural heritage Conservation Nanoscience 


  1. Abdel-Kareem O (2010) Monitoring, controlling and prevention of the fungal deterioration of textile artifacts in the museum of Jordanian heritage. Mediter Archaeol Archaeom 10:85–96Google Scholar
  2. Adamo M, Magaudda G (2003) Susceptibility of printed paper to attack of chewing insects after gamma irradiation and ageing. Restaurator 24:95–105Google Scholar
  3. Agarwal PN, Puvathingal JM (1969) Microbiological deterioration of woolen materials. Textile Res J 39:38–42Google Scholar
  4. Agrawal OP, Dhawan S, Garg KL, Shaheen F, Pathak N, Misra A (1988) Study of biodeterioration of the Ajanta wall paintings. Int Biodeterior 24:121–129Google Scholar
  5. Aguilera LAP, Zapata JAN, Morales BOO (2015) La bioprecipitación de carbonato de calcio por la biota nativa como un método de restauración. Nexo Revista Científica 28:25–40Google Scholar
  6. Allsopp D, Seal KJ, Gaylarde CC (2004) Introduction to biodeterioration. Cambridge University PressGoogle Scholar
  7. Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P (2001) Colloidal particles of Ca (OH) 2: properties and applications to restoration of frescoes. Langmuir 17:4251–4255Google Scholar
  8. Arai H (1984) Microbiological studies on the conservation of mural paintings in tumuli. In International symposium on the conservation and restoration of cultural property. Conservation and restoration of mural paintings (I). November 17–21, 1983, Tokyo, Japan, pp 117–124Google Scholar
  9. Arai H (2000) Foxing caused by fungi: twenty-five years of study. Int Biodeterior Biodegradation 46:181–188Google Scholar
  10. Area MC, Ceradame H (2011) Paper aging and degradation: recent findings and research methods. BioResources 6(4):5307–5337Google Scholar
  11. Baglioni M, Giorgi R, Berti D, Baglioni P (2012) Smart cleaning of cultural heritage: a new challenge for soft nanoscience. Nanoscale 4:42–53PubMedGoogle Scholar
  12. Bastian F, Alabouvette C (2009) Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. Int J Speleol 38(6):55Google Scholar
  13. Baty JW, Maitland CL, Minter W, Hubbe MA, Jordan-Mowery SK (2010) Deacidification for the conservation and preservation of paper-based works: a review. Bioresources 5:1955–2023Google Scholar
  14. Bech-Andersen J, Elborne SA, Goldie F, Singh J, Singh S, Walker B (1993). The true dry rot fungus (Serpula lacrymans) found in the wild in the forests of the Himalayas. Document-the International Research Group on Wood Preservation (Sweden)Google Scholar
  15. Berner M, Wanner G, Lubitz W (1997) A comparative study of the fungal flora present in medieval wall paintings in the chapel of the castle Herberstein and in the parish church of St Georgen in Styria, Austria. Int Biodeterior Biodegradation 40:53–61Google Scholar
  16. Bertolin C (2019) Preservation of cultural heritage and resources threatened by climate change. Geoscience 9(6)Google Scholar
  17. Blaser SA, Scheringer M, MacLeod M, Hungerbühler K (2008) Estimation of cumulative aquatic exposure and risk due to silver: contribution of nano-functionalized plastics and textiles. Sci Total Environ 390:396–409PubMedGoogle Scholar
  18. Błyskal B (2005) The Influence of Dyes on the Degree of Biodeterioration of a Woollen Textile. Doctoral dissertation, PhD Dissertation. Krakow University of Economics, Faculty of Commodity Science, Krakow, Poland (in Polish)Google Scholar
  19. Błyskal B (2009) Fungi utilizing keratinous substrates. Int Biodeterior Biodegradation 63:631–653Google Scholar
  20. Błyskal B (2014) Gymnoascus arxii’s potential in deteriorating woollen textiles dyed with natural and synthetic dyes. Int Biodeterior Biodegradation 86:349–357Google Scholar
  21. Błyskal B (2015) Fungal deterioration of a woollen textile dyed with cochineal. J Cult Herit 16:32–39Google Scholar
  22. Bock E (1993) The microbiology of masonry biodeterioration. J Appl Bacteriol 74:503–514Google Scholar
  23. Borgioli L, Caminati G, Gabrielli G and Ferroni E (1995) Removal of hydrophobic impurities from pictorial surfaces by means of heterogeneous systems. Sci Technol Cult Herit J “Comitato Nazionale per la Scienza e la Tecnologia dei Beni Culturali”, CNR, 4:67–74Google Scholar
  24. Borrego-Alonso S (2015) Los biocidas vegetales en el control del biodeterior o del patrimonio documental. Perspectivas e impacto. Revista CENIC. Cienc Biol 46:259–269Google Scholar
  25. Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Domenech-Carbo MT, Montes-Estelles RM (2010) Ensayos de biolimpieza con bacterias en pinturas murales. Arche 4-5:115–124Google Scholar
  26. Calvo A (1997) Conservación y restauración: materiales, técnicas y procedimientos: de la A a la ZGoogle Scholar
  27. Cameotra SS, Dakal TC (2012) Carbonatogenesis: microbial contribution to the conservation of monuments and artwork of stone. Conserv Sci Cult Herit 12:79–108Google Scholar
  28. Cappitelli F, Sorlini C (2005) From papyrus to compact disc: The microbial deterioration of documentary heritage. Crit Rev Microbiol 31(1):1–10PubMedGoogle Scholar
  29. Cappitelli F, Zanardini E, Ranalli G, Mello E, Daffonchio D, Sorlini C (2006) Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. Appl Environ Microbiol 72:3733–3737PubMedPubMedCentralGoogle Scholar
  30. Cappitelli F, Fermo P, Vecchi R, Piazzalunga A, Valli G, Zanardini E, Sorlini C (2009) Chemical–physical and microbiological measurements for indoor air quality assessment at the Ca’Granda Historical Archive, Milan (Italy). Water Air Soil Pollut 201:109–120Google Scholar
  31. Carretti E, Dei L, Baglioni P (2003) Solubilization of acrylic and vinyl polymers in nanocontainer solutions. Application of microemulsions and micelles to cultural heritage conservation. Langmuir 19:7867–7872Google Scholar
  32. Castrillón L, Marañón E, Fernández-Nava Y, Ormaechea P, Quiroga G (2013) Thermophilic co-digestion of cattle manure and food waste supplemented with crude glycerin in induced bed reactor (IBR). Bioresour Technol 136:73–77PubMedGoogle Scholar
  33. Castro RDT, López ALB (2013) Enfoque químico del deterioro y biodeterioro de rocas calcáreas conformantes de monumentos patrimoniales de importancia histórica y cultural. Revista Luna Azul:247–284Google Scholar
  34. Chahinian H, Nini L, Boitard E, Dubès JP, Comeau LC, Sarda L (2002) Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids 37:653–662PubMedGoogle Scholar
  35. Chelazzi, D., Giorgi, R., and Baglioni, P. (2006). Nanotechnology for Vasa Wood De-Acidification. In Macromolecular symposia (Vol. 238, 1, pp. 30–36). Weinheim: WILEY-VCH VerlagGoogle Scholar
  36. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interface Sci 92:42–49Google Scholar
  37. Cheng HN, Gross RA (2003) Biocatalysis in polymer science: an overview. ACS Symp Ser 840:1–33Google Scholar
  38. Ciferri O (1999) Microbial degradation of paintings. Appl Environ Microbiol 65:879–885PubMedPubMedCentralGoogle Scholar
  39. Ciferri O, Nola P, Seves AM, Seves A, Meloni S, Oddone M, Gallone A (1996) L’affresco di Sant’Agata al Monte di Pavia: ricerche ed analisi per il restauro. Memorie dell'Istituto Lombardo. Accademia di Scienze e Lettere 40:167–251Google Scholar
  40. Ciferri O, Tiano P, Mastromei G (eds) (2000) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Springer, BostonGoogle Scholar
  41. Claydon N (1984) Fusarium as an insect pathogen. In: The applied mycology of Fusarium. Cambridge University Press, Cambridge, UK, pp 117–128Google Scholar
  42. Corte AM, Ferroni A, Salvo VS (2003) Isolation of fungal species from test samples and maps damaged by foxing, and correlation between these species and the environment. Int Biodeterior Biodegradation 51:167–173Google Scholar
  43. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464PubMedGoogle Scholar
  44. Coutinho ML, Miller AZ, Phillip A, Mirão J, Dias L, Rogerio-Candelera MA, Macedo MF (2019) Biodeterioration of majolica glazed tiles by the fungus Devriesia imbrexigena. Constr Build Mater 212:49–56Google Scholar
  45. Cremonesi P (2004) L’uso dei tensioattivi e chelanti nella pulitura di opere policromeGoogle Scholar
  46. Cuetos MPG (2012) El patrimonio cultural. Conceptos básicos (Vol. 207). Universidad de ZaragozaGoogle Scholar
  47. Dakal TC, Arora PK (2012) Evaluation of potential of molecular and physical techniques in studying biodeterioration. Rev Environ Sci Biotechnol 11(1):71–104Google Scholar
  48. Dakal TC, Cameotra SS (2012) Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environ Sci Eur 24:36Google Scholar
  49. De Gennes PG, Taupin C (1982) Microemulsions and the flexibility of oil/water interfaces. J Phys Chem 86:2294–2304Google Scholar
  50. de Vries RP, Visser JAAP (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522Google Scholar
  51. del Mar López-Miras M, Martín-Sánchez I, Yebra-Rodríguez Á, Romero-Noguera J, Bolívar-Galiano F, Ettenauer J, Piñar G (2013) Contribution of the microbial communities detected on an oil painting on canvas to its biodeterioration. PLoS One 8:e80198Google Scholar
  52. Di Bonaventura MP, Del Gallo M, Cacchio P, Ercole C, Lepidi A (1999) Microbial formation of oxalate films on monument surfaces: bioprotection or biodeterioration? Geomicrobiol J 16:55–64Google Scholar
  53. Di Salvo S (2014) Nanotechnology for cultural heritage. Sci Technol Soc Int J 2:28–32Google Scholar
  54. Domenech-Carbo MT (2008) Novel analytical methods for characterising binding media and protective coatings in artworks. Anal Chim Acta 621:109–139PubMedGoogle Scholar
  55. Domingues JA, Bonelli N, Giorgi R, Fratini E, Gorel F, Baglioni P (2013) Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts. Langmuir 29:2746–2755Google Scholar
  56. Dupont J, Jacquet C, Dennetiere B, Lacoste S, Bousta F, Orial G, Roquebert MF (2007) Invasion of the French Paleolithic painted cave of Lascaux by members of the Fusarium solani species complex. Mycologia 99:526–533PubMedGoogle Scholar
  57. Estela CRL, Alejandro PR (2012) Biofilms: a survival and resistance mechanism of microorganisms. In Antibiotic Resistant Bacteria-A Continuous Challenge in the New Millennium. IntechOpenGoogle Scholar
  58. Ettenauer J, Sterflinger K, Piñar G (2010) Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. Int J Astrobiol 9:59–72Google Scholar
  59. Ettenauer JD, Piñar G, Lopandic K, Spangl B, Ellersdorfer G, Voitl C, Sterflinger K (2012) Microbes on building materials—evaluation of DNA extraction protocols as common basis for molecular analysis. Sci Total Environ 439:44–53PubMedGoogle Scholar
  60. Fabbri AA, Ricelli A, Brasini S, Fanelli C (1997) Effect of different antifungals on the control of paper biodeterioration caused by fungi. Int Biodeterior Biodegradation 39:61–65Google Scholar
  61. Favaro M, Mendichi R, Ossola F, Russo U, Simon S, Tomasin P, Vigato PA (2006) Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part I: photo-oxidative weathering. Polym Degrad Stabil 9:3083–3096Google Scholar
  62. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668PubMedGoogle Scholar
  63. Ferroni E, Baglioni P (1984) Experiments on a proposed method for restoration of sulphated frescos. In Scientific methodologies applied to works of art. Proceedings of the symposium, Florence, Italy 2–5 May 1984. pp 108–109Google Scholar
  64. Ferroni E, Malaguzzi Valerj V, Rovida G (1969) Experimental study by diffraction of heterogeneous systems as a preliminary to the proposal of a technique for the restoration of gypsum polluted muralsGoogle Scholar
  65. Ferroni E, Gabrielli G, Caminati G (1992) ASportazione di materiali idrofobi da superfici pittoriche murali mediante solubilizzazione in sistemi dispersi. La Cappella Brancacci, la scienza per Masaccio, Masolino e Filippino Lippi, ed. Olivetti, Quaderni del restauroGoogle Scholar
  66. Flemming HC (1998) Relevance of biofilms for the biodeterioration of surfaces of polymeric materials. Polym Degrad Stabil 59:309–315Google Scholar
  67. Florian MLE (2002) Fungal facts. Archetype, LondonGoogle Scholar
  68. Gallo F (1965) Nota sulla conservazione dei microfilm. Ist Patologia del Libro Boll (1–4)Google Scholar
  69. Gambino M, Ahmed MAAA, Villa F, Cappitelli F (2017) Zinc oxide nanoparticles hinder fungal biofilm development in an ancient Egyptian tomb. Int Biodeterior Biodegrad 122:92–99Google Scholar
  70. Gargani G (1968) Fungus contamination of Florence art masterpieces before and after the 1966 disaster. In: Biodeterioration of materials, microbiological and allied aspects. Elsevier, Amsterdam, pp 252–257Google Scholar
  71. Gaylarde CC, Morton LG (1999) Deteriogenic biofilms on buildings and their control: a review. Biofouling 14(1):59–74Google Scholar
  72. Gettens RJ, Pease M, Stout GL (1941) The problem of mold growth in paintings. In: Technical studies in the field of the fine arts (Vol. 9). p 127Google Scholar
  73. Geweely NS (2006) Non-toxic fumigation and alternative control techniques against fungal colonization for preserving archaeological oil painting. Int J Bot 2:353–362Google Scholar
  74. Giacobini C, Firpi M (1981) Problemi di microbiologia nei dipinti su tela. In Atti del convegno sul restauro delle opere d’arte. Firenze, 2–7 novembre 1976, pp 203–212Google Scholar
  75. Gorbushina AA, Petersen K (2000) Distribution of microorganisms on ancient wall paintings as related to associated faunal elements. Int Biodeterior Biodegrad 46(4):277–284Google Scholar
  76. Gorbushina AA, Heyrman J, Dornieden T, Gonzalez-Delvalle M, Krumbein WE, Laiz L, Petersen K, Saiz-Jimenez C, Swings J (2004) Bacterial and fungal diversity and biodeterioration problems in mural painting environments of St. Martins church (Greene–Kreiensen, Germany). Int Biodeterior Biodegrad 53(1):13–24Google Scholar
  77. Greif MD, Currah RS (2007) Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia 99(1):7–19PubMedGoogle Scholar
  78. Guglielminetti M, Morghen CDG, Radaelli A, Bistoni F, Carruba G, Spera G, Caretta G (1994) Mycological and ultrastructural studies to evaluate biodeterioration of mural paintings. Detection of fungi and mites in frescos of the monastery of St damian in assisi. Int Biodeterior Biodegrad 33(3):269–283Google Scholar
  79. Guiamet, P., Borrego, S., Lavin, P., Perdomo, I., and de Saravia, S. G. (2011) Biofouling and biodeterioration in materials stored at the historical archive of the Museum of La Plata, argentine and at the National Archive of the Republic of Cuba. Colloids Surf B: Biointerfaces, 85(2), 229–234Google Scholar
  80. Gunde-Cimerman N, Zalar P, Jeram S (1998) Mycoflora of cave cricket Troglophilus neglectus cadavers. Mycopathologia 141(2):111–114Google Scholar
  81. Gutarowska B, Pietrzak K, Machnowski W, Milczarek JM (2017) Historical textiles–a review of microbial deterioration analysis and disinfection methods. Text Res J 87(19):2388–2406Google Scholar
  82. He Y, Ingudam S, Reed S, Gehring A, Strobaugh TP, Irwin P (2016) Study on the mechanism of antibacterial action of magnesium oxide nanoparticles against foodborne pathogens. J Nanobiotechnol 14(1):54Google Scholar
  83. Hoang CP, Kinney KA, Corsi RL, Szaniszlo PJ (2010) Resistance of green building materials to fungal growth. Int Biodeterior Biodegrad 64(2):104–113Google Scholar
  84. Horie CV (2013) Materials for conservation. RoutledgeGoogle Scholar
  85. Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS-and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139PubMedGoogle Scholar
  86. Hueck HJ (1965) The biodeterioration of materials as a part of hylobiology. Mater Org 1(1):5–34Google Scholar
  87. Humber RA, Hansen KS (2005) ARSEF Index: Host-by Fungus. Fungus, Host order, Host family, Host genus, Host species Arsef (28 September 2005). USDA-ARS Plant Protection Research Unit US Plant, Soil and Nutrition Lab. NY (USA)
  88. ICOMOS International Committee on Cultural Tourism (2002) ICOMOS international cultural tourism charter: principles and guidelines for managing tourism at places of cultural and heritage significance. International Council on Monuments and Sites, ICOMOS International Cultural Tourism CommitteeGoogle Scholar
  89. Inoue M, Koyano M (1991) Fungal contamination of oil paintings in Japan. Int Biodeterior 28(1–4):23–35Google Scholar
  90. Ionita I (1973) Contributions to the study of the biodeterioration of the works of art and historical monuments. IV. Fungi involved in the deterioration of mural painting from the monasteries of Moldavia. Revue roumaine de biologie. Serie de botaniqueGoogle Scholar
  91. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113):818PubMedGoogle Scholar
  92. Janaki AC, Sailatha E, Gunasekaran S (2015) Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 144:17–22PubMedGoogle Scholar
  93. Jeffries P (1986) Growth of Beauvaria alba on mural paintings in Canterbury cathedral. Int Biodeterior 22(1):11–13Google Scholar
  94. Jerusik RJ (2010) Fungi and paper manufacture. Fungal Biol Rev 24(1–2):68–72Google Scholar
  95. Joshi VK, Attri D (2005) Solid state fermentation of apple pomace for the production of value added products. Pollut Urban Ind Environ 180Google Scholar
  96. Jurado V, Sanchez-Moral S, Saiz-Jimenez C (2008) Entomogenous fungi and the conservation of the cultural heritage: A review. Int Biodeterior Biodegradation 62(4):325–330Google Scholar
  97. Kaarakainen P, Rintala H, Vepsäläinen A, Hyvärinen A, Nevalainen A, Meklin T (2009) Microbial content of house dust samples determined with qPCR. Sci Total Environ 407(16):4673–4680PubMedGoogle Scholar
  98. Karamanos Y (1997) Endo-N-acetyl-β-D-glucosaminidases and their potential substrates: structure/function relationships. Res Microbiol 148(8):661–671PubMedGoogle Scholar
  99. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3(1):95–101PubMedGoogle Scholar
  100. Koestler RJ, Koestler VH (eds) (2003) Art, biology, and conservation: biodeterioration of works of art. Metropolitan museum of art, New YorkGoogle Scholar
  101. Kowalik R (1980) Chapter 4: Microbiodeterioration of library materials. Part 2. Microbiodecomposition of basic organic library materials. Restaurator 4(3–4):135–220Google Scholar
  102. Kubátová A, Dvorák L (2005) Entomopathogenic fungi associated with insect hibernating in underground shelters. Czech Mycol 57(3/4):221Google Scholar
  103. Kunert J (1989) Biochemical mechanism of keratin degradation by the actinomycete Streptomyces fradiae and the fungus Microsporum gypseum: a comparison. J Basic Microbiol 29(9):597–604Google Scholar
  104. Leatherdale D (1970) The arthropod hosts of entomogenous fungi in Britain. Entomophaga 15(4):419–435Google Scholar
  105. López-Miras M, Piñar G, Romero-Noguera J, Bolivar-Galiano FC, Ettenauer J, Sterflinger K, Martin-Sanchez I (2013) Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: Identification and evaluation of their biodegradative potential. Aerobiologia 29(2):301–314PubMedGoogle Scholar
  106. Lugauskas A, Jaskelevicius B (2007) Microbiological destruction of constructional and decoration materials of buildings. Materi Sci (Medžiagotyra) 13(1):70–73Google Scholar
  107. Magaudda G (2004) The recovery of biodeteriorated books and archive documents through gamma radiation: some considerations on the results achieved. J Cult Herit 5(1):113–118Google Scholar
  108. Mahltig B, Swaboda C, Roessler A, Böttcher H (2008) Functionalising wood by nanosol application. J Mater Chem 18(27):3180–3192Google Scholar
  109. Maina UM, Galadima IB, Gambo FM, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6(1):27–32Google Scholar
  110. Mason-Williams A (1965) The growth of fungi in caves in Great Britain. Stud Speleol 1(2–3):96–99Google Scholar
  111. Matočec N, Ozimec R (2001) Observations on Cordyceps riverae (Hypocreales, Ascomycota) in Croatian caves. Nat Croat Periodicum Musei Hist Natur Croat 10(3):197–206Google Scholar
  112. Meier C, Petersen K (2006) Schimmelpilze auf Papier, ein Handbuch für Restauratoren: biologische Grundlagen, Erkennung, Behandlung und PräventionGoogle Scholar
  113. Melo D, Sequeira SO, Lopes JA, Macedo MF (2019) Stains versus colourants produced by fungi colonising paper cultural heritage: a review. J Cult Herit 35:161–182Google Scholar
  114. Menei E (1990) Le papyrusGoogle Scholar
  115. Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AML, Santos MJA, Freitas H (2009) Fungal diversity in ancient documents. A case study on the archive of the University of Coimbra. Int Biodeterior Biodegrad 63(5):626–629Google Scholar
  116. Michaelsen A, Piñar G, Pinzari F (2010) Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth century. Microb Ecol 60(1):69–80PubMedPubMedCentralGoogle Scholar
  117. Milicia MT (2014) Lombroso e il brigante: storia di un cranio conteso. SalernoGoogle Scholar
  118. Mondal S, Baksi S, Koris A, Vatai G (2016) Journey of enzymes in entomopathogenic fungi. Pac Sci Rev A Nat Sci Eng 18(2):85–99Google Scholar
  119. Monte M (2003) Oxalate film formation on marble specimens caused by fungus. J Cult Herit 4(3):255–258Google Scholar
  120. Morton LHG, Surman SB (1994) Biofilms in biodeterioration—a review. Int Biodeterior Biodegrad 34(3–4):203–221Google Scholar
  121. Munafo P, Goffredo GB, Quagliarini E (2015) TiO2-based nanocoatings for preserving architectural stone surfaces: an overview. Constr Build Mater 84:201–218Google Scholar
  122. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270(45):26723–26726PubMedGoogle Scholar
  123. Nicolai P, Lombardi D, Tomenzoli D, Villaret AB, Piccioni M, Mensi M, Maroldi R (2009) Fungus ball of the paranasal sinuses: Experience in 160 patients treated with endoscopic storia di un cranio conteso surgery. Laryngoscope 119(11):2275–2279PubMedGoogle Scholar
  124. Nielsen KF, Holm G, Uttrup LP, Nielsen PA (2004) Mould growth on building materials under low water activities. Influence of humidity and temperature on fungal growth and secondary metabolism. Int Biodeterior Biodegrad 54(4):325–336Google Scholar
  125. Nittérus M (2000) Fungi in archives and libraries. Restaurator 21(1):25–40Google Scholar
  126. Nugari MP, Priori GF (1985, September) Resistance of acrylic polymers to microorganisms-first part. 5th international congress on deterioration and conservation of stone. Lausanne, pp 25–27Google Scholar
  127. Nugari MP, Realini M, Roccardi A (1993) Contamination of mural paintings by indoor airborne fungal spores. Aerobiologia 9(2):131–139Google Scholar
  128. Nyuksha YP (1983) Some special cases of biological deterioration of books. Restaurator 5(3–4):177–182Google Scholar
  129. Obidi OF, Aboaba OO, Makanjuola MS, Nwachukwu SCU (2009) Microbial evaluation and deterioration of paints and paint-products. J Environ Biol 30(5):835PubMedGoogle Scholar
  130. Olmedo-Juárez A, Rojo-Rubio R, Zamilpa A, De Gives PM, Arece-García J, López-Arellano ME, von Son-de Fernex E (2017) In vitro larvicidal effect of a hydroalcoholic extract from Acacia cochliacantha leaf against ruminant parasitic nematodes. Vet Res Commun 41(3):227–232PubMedGoogle Scholar
  131. Pangallo D, Chovanova K, Šimonovičová A, Ferianc P (2009) Investigation of microbial community isolated from indoor artworks and air environment: identification, biodegradative abilities, and DNA typing. Can J Microbiol 55(3):277–287PubMedGoogle Scholar
  132. Pankhurst ES, Davies MJ, Blake HM (1972) The ability of polymers or materials containing polymers to provide a source of carbon for selected microorganisms. In Biodeterioration of materials. Proceedings of the 2nd international biodeterioration symposium. Lunteren, The Netherlands, 13th–18th September 1971 (pp. 76–90)Google Scholar
  133. Páramo Aguilera LA, Zapata N, De la Cruz E (2011) Aislamiento e identificación de microorganismos en biopelículas provenientes del Castillo de Chapultepec, Ciudad de México. Nexo Revista Cient 24(2):1–9Google Scholar
  134. Pekhtasheva, E., Neverov, A., Kubica, S., Zaikov, G. (2012). Biodegradation and biodeterioration of some natural polymersGoogle Scholar
  135. Péreza JR, Martínezb PG Lights and shadows over the implementation of the Recommendation on the Historic Urban Landscape: “Managing change” in Ballarat and Cuenca using a radical approach focused on values and authenticityGoogle Scholar
  136. Petersen K, Grote G, Krumbein WE (1988) Biotransfer of metals by fungi isolated from rock. In VIth International Congress on deterioration and conservation of stone. Supplement.= VIe Congrès International sur l’altération et la conservation de la pierre. Torun, 12-14.09. 1988, pp 111–119Google Scholar
  137. Petrov P, Petrova E, Tchorbanov B, Tsvetanov CB (2007) Synthesis of biodegradable hydroxyethylcellulose cryogels by UV irradiation. Polymer 48(17):4943–4949Google Scholar
  138. Petushkova JP, Lyalikova NN (1986) Microbiological degradation of lead-containing pigments in mural paintings. Stud Conserv 31(2):65–69Google Scholar
  139. Pinzari F, Montanari M (2011) Mould growth on library materials stored in compactus-type shelving units. In: Sick building syndrome. Springer, Berlin, Heidelberg, pp 193–206Google Scholar
  140. Pinzari F, Cialei V, Barbabietola N (2010) Measurement of the fungal deteriorating potential in the dust of indoor environments. e-Preservation Sci J 7:29–34Google Scholar
  141. Poggi G, Toccafondi N, Chelazzi D, Canton P, Giorgi R, Baglioni P (2016) Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. J Colloid Interface Sci 473:1–8PubMedGoogle Scholar
  142. Porqué es importante la conservación del patrimonio cultural? Available from: https:// sabiendomsdenuestropatrimonio Accessed: 7 May 2018
  143. Poyatos Jiménez F (2007) Procesos de biodeterioro en pinturas sobre lienzo del Museo de Bellas Artes de Granada: examen visual y gráfico. Universidad de Granada, GranadaGoogle Scholar
  144. Prompayuk S, Chairattananon P (2016) Preservation of cultural heritage community: cases of Thailand and developed countries. Procedia Soc Behav Sci 234:239–243Google Scholar
  145. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27(1):76–83PubMedGoogle Scholar
  146. Ravikumar HR, Rao SS, Karigar CS (2012) Biodegradation of paints: a current status. Indian J Sci Technol 5(1):1977–1987Google Scholar
  147. Rebricova NL (1991) Some ecological aspects of protection of old Russian wall paintings from microbiological deterioration. In International conference on biodeterioration of cultural property. 20–25 February, 1989. Preprints, Vol. I, pp 25–37Google Scholar
  148. Rinaldi A (2006) Saving a fragile legacy. EMBO Rep 7(11):1075–1079PubMedPubMedCentralGoogle Scholar
  149. Rivera CM (2018) Patrimonio Cultural Tangible e Intangible. Available from:
  150. Rivera LEC, Ramos AP, Desgarennes MDCP (2010) Importancia de las biopelículas en la práctica médica. práctica médica 54(1):14–24Google Scholar
  151. Roman C, Diaconescu R, Scripcariu L, Grigoriu A (2013) Biocides used in preservation, restoration and conservation of the paper. Eur J Sci Theol 9(4):263–271Google Scholar
  152. Ruffolo SA, La Russa MF, Malagodi M, Rossi CO, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A 100(3):829–834Google Scholar
  153. Ruga L, Bonofiglio T, Orlandi F, Romano B, Fornaciari M (2008) Analysis of the potential fungal biodeteriogen effects in the “Doctorate Library” of the University of Perugia, Italy. Grana 47(1):60–69Google Scholar
  154. Ruga L, Orlandi F, Romano B, Fornaciari M (2015) The assessment of fungal bioaerosols in the crypt of St. Peter in Perugia (Italy). Int Biodeterior Biodegrad 98:121–130Google Scholar
  155. Rutala WA, Weber DJ (1999) Infection control: the role of disinfection and sterilization. J Hosp Infect 43:S43–S55PubMedGoogle Scholar
  156. Saarela M, Alakomi HL, Suihko ML, Maunuksela L, Raaska L, Mattila-Sandholm T (2004) Heterotrophic microorganisms in air and biofilm samples from Roman catacombs, with special emphasis on actinobacteria and fungi. Int Biodeterior Biodegrad 54(1):27–37Google Scholar
  157. Saiz-Jimenez C (1993) Deposition of airborne organic pollutants on historic buildings. Atmos Environ Part B Urban Atmos 27(1):77–85Google Scholar
  158. Saiz-Jimenez C, Samson RA (1981) Biodegradación de obras de arte. Hongos implicados en la degradación de los frescos del monasterio de la Rábida (Huelva). Bot Macaronesica 8:255–264Google Scholar
  159. Salvadori B, Dei L (2001) Synthesis of Ca (OH) 2 nanoparticles from diols. Langmuir 17(8):2371–2374Google Scholar
  160. Salvadori O, Municchia AC (2016) The role of fungi and lichens in the biodeterioration of stone monuments. Open Conf Proc J 7(1):39Google Scholar
  161. Savulescu A, Ionita I (1971) Contributions to the study of the biodeterioration of the works of art and historic monuments, i. Species of fungi isolated from frescoes. Rev Roum Biol 16(3):201–206Google Scholar
  162. Schmitt JA (1974) The microecology of mold growth. J Paint Technol 46(599):59–64Google Scholar
  163. Sequeira SO, Cabrita EJ, Macedo MF (2014) Fungal biodeterioration of paper: how are paper and book conservators dealing with it? An international survey. Restaurator Int J Preservation Library Arch Mater 35(2):181–199Google Scholar
  164. Sequeira SO, Phillips AJ, Cabrita EJ, Macedo MF (2017) Ethanol as an antifungal treatment for paper: short-term and long-term effects. Stud Conserv 62(1):33–42Google Scholar
  165. Seves A, Romanò M, Maifreni T, Sora S, Ciferri O (1998) The microbial degradation of silk: a laboratory investigation. Int Biodeterior Biodegrad 42(4):203–211Google Scholar
  166. Shahid AA, Rao AQ, Bakhsh A, Husnain T (2012) Entomopathogenic fungi as biological controllers: new insights into their virulence and pathogenicity. Arch Biol Sci 64(1):21–42Google Scholar
  167. Sileo M, Gizzi FT, Masini N (2015) Monitoraggio microclimatico: passato, presente e prospettive future. Salvaguardia, Conservazione e Sicurezza del Patrimonio Culturale. Nuove metodologie e tecnologie operative-Zaccara Editore. Lagonegro (PZ) 384:27–52Google Scholar
  168. Simmons JE, Muñoz-Saba Y (eds) (2005) Cuidado, manejo y conservación de las colecciones biológicas. Univesidad Nacional de Colombia, BogotáGoogle Scholar
  169. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275(1):177–182Google Scholar
  170. Stankovič J, Cílek V, Bruthans J, Gaál Ľ, Kovács Á, Rozložník M et al (2005) Krásnohorská jaskyňa Buzgó. Speleoklub MINOTAURUS, Rožňava, pp 1–150Google Scholar
  171. Steiger M, Charola AE, Sterflinger K (2011) Weathering and deterioration. In: Stone in architecture. Springer, Berlin, Heidelberg, pp 227–316Google Scholar
  172. Stepien P, Kozlowski R, Tokarz M (1970) Gypstop-colloidal silica for protective coating of porous building materials: practical experience at the Wawel Castle, Cracow, Poland. WIT Trans Built Environ 4Google Scholar
  173. Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17(2):97–124Google Scholar
  174. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55Google Scholar
  175. Strzelczyk AB (2004) Observations on aesthetic and structural changes induced in Polish historic objects by microorganisms. Int Biodeterior Biodegrad 53(3):151–156Google Scholar
  176. Strzelczyk AB, Krumbein WE, Majewska L (1989) Öber die Zerstörung historischer Ledereinbände durch Mikroororganismen. Internationale Leder-und Pergamenttagung, vom 8:287–300Google Scholar
  177. Stulik D, Miller D, Khanjian H, Carlson J, Khandekar N, Wolbers R (2004) Solvent gels for the cleaning of works of art: the residue question. Getty Publications, Los AngelesGoogle Scholar
  178. Szostak-Kotowa J (2004) Biodeterioration of textiles. Int Biodeterior Biodegrad 53(3):165–170Google Scholar
  179. Tang ZX, Fang XJ, Zhang ZL, Zhou T, Zhang XY, Shi LE (2012) Nanosize MgO as antibacterial agent: preparation and characteristics. Braz J Chem Eng 29(4):775–781Google Scholar
  180. Teetor-Barsch GH, Roberts DW (1983) Entomogenous Fusarium species. Mycopathologia 84(1):3–16PubMedGoogle Scholar
  181. Tiano P (2016) Biodeterioration of stone monuments a worldwide issue. Open Conf Proc J 7(1):29Google Scholar
  182. Tiano P, Gargani G (1981) Controlli microbiologici su alcuni affreschi fiorentini. In Atti del convegno sul restauro delle opere d’arte. Firenze, 2–7 Novembre 1976, pp 341–358Google Scholar
  183. Tomšič B, Klemenčič D, Simončič B, Orel B (2011) Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: leaching versus bio-barrier formation. Polym Degrad Stab 96(7):1286–1296Google Scholar
  184. UNESCO (2013) Patrimonio Indicadores UNESCO de cultura para el Desarrollo. Available from: Vaillant CM. Materiales constituyentes de las colecciones de archivos y bibliotecas. In: Biodetrioro del patrimonio histórico documental: Alternativas para su erradicación y control. Río de Janeiro: Ed: Mast/FCRBGoogle Scholar
  185. Vaillant CM (2013) Biodeterioro del Patrimonio Histórico Documental: Alterantivas para su erradicación y Control. Ed. MAST/ FCRB, Río de JaneiroGoogle Scholar
  186. Valdés-Pérez O, Borrego-Alonso S, Vivar-González I, Anaya-Villalpanda M, Molina-Veloso A (2016) Actividad antifúngica del aceite esencial de clavo de olor en el control del biodeterioro fúngico de documentos. Revista CENIC. Cienc Biol 47(2):78–85Google Scholar
  187. Valentin N (2003) Microbial contamination in museum collections: organic materials. Mol Biol Cult Herit: 85–91Google Scholar
  188. Vásquez Ponce PX (2013) Caracterización y uso del extracto de albahaca como fungicida en bienes patrimoniales maderosos de Quito DM (Bachelor’s thesis, Quito: UCE)Google Scholar
  189. Videla HA, Guiamet PS, de Saravia SGG (2003) Biodeterioro de materiales estructurales de sitios arqueológicos de la civilización maya. Revista del Museo de la Plata 44:1–11Google Scholar
  190. Vollrath F (1999) Biology of spider silk. Int J Biol Macromol 24(2–3):81–88PubMedGoogle Scholar
  191. Wainwright M, Ali TA, Barakah F (1993) A review of the role of oligotrophic micro-organisms in biodeterioration. Int Biodeterior Biodegrad 31(1):1–13Google Scholar
  192. Walentowska J, Foksowicz-Flaczyk J (2013) Thyme essential oil for antimicrobial protection of natural textiles. Int Biodeterior Biodegrad 84:407–411Google Scholar
  193. Warscheid T (2000) Integrated concepts for the protection of cultural artifacts against biodeterioration. In: Of microbes and art. Springer, Boston, pp 185–201Google Scholar
  194. Went FW (1969) Fungi associated with stalactite growth. Science 166(3903):385–386PubMedGoogle Scholar
  195. Wheeler G, Mendez-Vivar J, Fleming S (2003) The use of modified Zr-nPropoxide in the consolidation of calcite: a preliminary study focused into the conservation of cultural heritage. J Sol-Gel Sci Technol 26(1–3):1233–1237Google Scholar
  196. Wolbers, R. (2000). Cleaning painted surfaces: aqueous methodsGoogle Scholar
  197. Xie W (1991) Identification and prevention of mould on the frescoes from Chinese Tong tombs. In Proceedings of the EEC China workshop on preservation of cultural heritages. Xian, Shaanxi, PR Of China, September 25–30, 1991, pp 431–438Google Scholar
  198. Zammit G, Sánchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409(14):2773–2782PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Saritha Vara
    • 1
  • Manoj Kumar Karnena
    • 1
  • Swathi Dash
    • 1
  • R. Sanjana
    • 1
  1. 1.Department of Environmental ScienceGITAM Institute of Science, GITAM (Deemed to be University)VisakhapatnamIndia

Personalised recommendations