Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 121))

Abstract

This paper presents the usefulness of horseshoe-shaped antenna: mathematically based on baker’s transformation. The proposed antenna has the property of filling a plane using higher-order iterations and exploited in realization of a multiband resonant antenna. The effect of additional iterations resulting in the reduction of resonant frequency is near-logarithmic pattern. The designed antenna shows multiple frequency bands ranging from 1.01 to 7.60 GHz. It has been also observed that the proposed prototype antenna has 75% efficiency, directivity up to 11.5 dBi and gain of about 10 dB. The antenna characteristics have been studied using IE3D v.14 simulation software based on method of moment (MoM) and also experimentally verified using VNA network analyzer. Simulation and experimental results are in good agreement and demonstrate the performance of the design methodology and the proposed antenna structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahl, J., Bhartia, P.: Microstrip Antennas. Artech House, Dedham, Ma (1981)

    Google Scholar 

  2. Lizzi, L., Viani, F., Zeni, E., Massa, A.: A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas Wirel. Propag. Lett. 8, 568–571 (2009)

    Article  Google Scholar 

  3. Madelbrot, B.B.: The Fractal Geometry of Nature. Freeman, New York (1983)

    Google Scholar 

  4. Puente, C., Romeu, J., Cardama, A.: Fractal-shaped antennas. In: Werner, D.H., Mittra, R. (eds.) Frontiers in Electromagnetic, pp. 94203 (1999)

    Google Scholar 

  5. Cohen, N.: Fractal antenna applications in wireless telecommunications. In: Proceedings of Electronics Industries Forum of New England, pp. 4349 (1997)

    Google Scholar 

  6. Puente, C., Pous, R., Romeu, J., Garcia, X.: Antennas fractals of multi fractals. Eur. Pat. ES 2,112–163 (1998)

    Google Scholar 

  7. Peitgen, H.-O., Henriques, J.M., Penedo, L.F. (eds.) Fractals in the Fundamental and Applied Sciences. Amsterdam, North Holland (1991)

    Google Scholar 

  8. Cherepanov, G.P., Balankin, A.S., Ivanova, V.S.: Fractal fracture mechanics. Eng. Fract. Mechan. 51, 9971033 (1995)

    Article  Google Scholar 

  9. Werner, D.H., Haupt, R.L., Werner, P.L.: Fractal antenna engineering: the theory and design of fractal antenna arrays. IEEE Antennas Propagat. Mag. 41, 3759 (1999)

    Article  Google Scholar 

  10. Werner, D.H., Werner, P.L., Jaggard, D.L., Jaggard, A.D., Puente, C., Haupt, R.L.: The theory and design of fractal antenna arrays, In: Werner, D.H., Mittra,R. (eds.) Frontiers in Electromagnetic, pp. 94203 (1999)

    Google Scholar 

  11. Puente, C., Romeu, J., Pous, R., Cardama, A.: On the behavior of the sierpinski multiband fractal antenna. IEEE Trans. Antennas Propagat. 46, 517524 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Puente, C., Romeu, J., Pous, R., Garcia, X., Benitez, F.: Fractal multiband antenna based on the sierpinski gasket. Electron. Lett. 32(1), 12 (1996)

    Article  Google Scholar 

  13. Puente, C., Romeu, J., Bartoleme, R., Pous, R.: Fractal multiband antenna based on sierpinski gasket. Electron. Lett. 32, 12 (1996)

    Article  Google Scholar 

  14. Baliarda, C.P., Romeu, J., Cardama, A.: The koch monopole: a small fractal antenna. IEEE Antennas Propag. Mag. 48(11), 1773–1781 (2000)

    Article  Google Scholar 

  15. Best, S.R.: On the resonant properties of the koch fractal and other wire monopole antennas. IEEE Antennas Wirel. Propag. Lett. 1, 74–76 (2002)

    Article  Google Scholar 

  16. Puente, C., Romeu, J., Bartolome, R., Pous, R.: Perturbation of the sierpinski antenna to allocate operating bands. Electron. Lett. 32, 2186–2188 (1996)

    Article  Google Scholar 

  17. Lo, T.K., Hwang, Y.: Microstrip antennas of very high permittivity for personal communications. In: Proceedings of 1997 Asia Pacific Microwave Conference, pp. 253256 (1997)

    Google Scholar 

  18. Sinati, R.A.: CAD of Micro Strip Antennas for Wireless Applications. Artech House, Norwood, MA (1996)

    Google Scholar 

  19. Wang, H.Y., Lancaster, M.J.: Aperture-coupled thin-film superconducting meander antennas. IEEE Trans. Antennas Propag. 47, 829836 (1999)

    Article  Google Scholar 

  20. Waterhouse, R.: Printed Antennas for Wireless Communications. Wiley, Hoboken, NJ (2007)

    Google Scholar 

  21. Kwak, K.-S., Choi, S.-H.: Horseshoe shaped antenna for dual-band WLAN communications with multi L slot. Microw. Technol. Lett. 51(2), 463–465 (2009)

    Article  Google Scholar 

  22. Malik, P., Parthasarthy, H.: Synthesis of randomness in the radiated fields of antenna array. Int. J. Microwave Wirel. Technol. 3(6), 701–705 (2011). https://doi.org/10.1017/S1759078711000791

  23. Malik, P.K., Parthasarthy, H., Tripathi, M.P.: Axisymmetric excited integral equation using moment method for plane circular disk. Int. J. Sci. Eng. Res. 3(3), 1–3 (2012, March). ISSN 2229-5518

    Google Scholar 

  24. Malik, P.K., Singh, M.: Multiple bandwidth design of microstrip antenna for future wireless communication. Int. J. Recent Technol. Eng. 8(2), 5135–5138 (2019, July). ISSN: 2277-3878. https://doi.org/10.35940/ijrte.B2871.078219

  25. Malik, P.K., Parthasarthy, H., Tripathi, M.P.: Analysis and design of Pocklingotn’s equation for any arbitrary surface for radiation. Int. J. Sci. Eng. Res. 7(9), 208–213 (2016, September)

    Google Scholar 

  26. Budhiraja, I., Aftab Alam Khan, Mohd., Farooqi, M., Pal, M.K.: Multiband stacked microstrip patch antenna for wireless applications. J. Telecommun. 16(2), 925–931 (2012, October). (I.F.-1.7)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vineet Vishnoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vishnoi, V., Malik, P.K., Pal, M.K. (2020). Horseshoe-Shaped Multiband Antenna for Wireless Application. In: Singh, P., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J., Obaidat, M. (eds) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). Lecture Notes in Networks and Systems, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-15-3369-3_3

Download citation

Publish with us

Policies and ethics