Skip to main content

Abstract

There is lack of complete congestion control solution that is optimized or practical with the Named Data Networking (NDN)-based MANET environment. All the existing suggested solutions are either for general NDN which is not optimized for MANET environment or congestion control solution for incomplete NDN-based MANET. Therefore, we recommend a complete congestion control solution specifically for NDN-based MANET which we call Standbyme Congestion Control or simply called Standbyme. Standbyme design optimized for NDN-based MANET needs in reducing network congestion’s bad effect such as goodput reduction, increment of number of packet loss or increment of delay in NDN-based MANET. Through the testbed experiment, we did by comparing Standbyme with other congestion control methods we selected for comparison, i.e., a practical congestion control for NDN (PCON) congestion control and best effort link reliability protocol (BELRP) congestion control, indicating Standbyme was able to drastically reduce network congestion in NDN-based MANET. Without sacrificing the performance of NDN-based MANET, Standbyme has also reduced bad effect of network congestion through better approach of congestion prevention and reduction in MANET environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanellopoulos, D.: Congestion control for manets: an overview. ICT Express (2018). https://doi.org/10.1016/j.icte.2018.06.001. URL https://www.sciencedirect.com/science/article/pii/S2405959518302285

  2. Lochert, C., Scheuermann, B., Mauve, M.: A survey on congestion control for mobile ad hoc networks. Wirel. Commun. Mob. Comput. 7(5), 655–676 (2007). https://doi.org/10.1002/wcm.524. URL http://onlinelibrary.wiley.com.ezproxy.psz.utm.my/doi/10.1002/wcm.524/abstract.00149

  3. Kang, J., Zhang, Y., Nath, B.: Accurate and energy-efficient congestion level measurement in ad hoc networks. In: IEEE Wireless Communications and Networking Conference, 2005, vol. 4, pp. 2258–2263 (2005). https://doi.org/10.1109/wcnc.2005.1424867

  4. Seddik-Ghaleb, A., Ghamri-Doudane, Y., Senouci, S.M.: TCP computational energy cost within wireless mobile ad hoc network. In: 2008 33rd IEEE Conference on Local Computer Networks (LCN), pp. 522–524 (2008). https://doi.org/10.1109/lcn.2008.4664220

  5. Vyas, G.S., Deshpande, V.S.: Performance analysis of congestion in wireless sensor networks. In: 2013 3rd IEEE International Advance Computing Conference (IACC), pp. 254–257 (2013). https://doi.org/10.1109/iadcc.2013.6514230

  6. Sharma, N., Gupta, A., Rajput, S.S., Yadav, and V.K.: Congestion Control Techniques in MANET: a survey. In: 2016 Second International Conference on Computational Intelligence Communication Technology (CICT), pp. 280–282 (2016). https://doi.org/10.1109/CICT.2016.62

  7. Vadivel, R., Bhaskaran, V.M.: Adaptive reliable and congestion control routing protocol for MANET. Wirel. Netw. 23(3), 819–829 (2017). https://doi.org/10.1007/s11276-015-1137-3. Bibtex: Vadivel2017 bibtex ISBN: 1127601511373

  8. Amadeo, M., Molinaro, A., Ruggeri, G.: E-CHANET: routing, forwarding and transport in information-centric multihop wireless networks. Comput. Commun. 36(7), 792–803 (2013). https://doi.org/10.1016/j.comcom.2013.01.006. URL http://www.sciencedirect.com/science/article/pii/S0140366413000248

  9. Amadeo, M., Molinaro, A., Campolo, C., Sifalakis, M., Tschudin, C.: Transport layer design for named data wireless networking. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 464–469 (2014). https://doi.org/10.1109/infcomw.2014.6849276

  10. Li, C.C., Xie, R.C., Huang, T., Liu, Y.j.: Cross-layer congestion control in named-data multihop wireless networks. Adhoc Sens. Wirel. Netw. 39(1–4), 61–95 (2017)

    Google Scholar 

  11. Li, C., Xie, R., Huang, T., Liu, Y.: Jointly optimal congestion control, forwarding strategy and power control for named-data multihop wireless Network. IEEE Access 5, 1013–1026 (2017). https://doi.org/10.1109/access.2016.2634525

  12. Li, C.C., Xie, R.C., Huang, T., Liu, Y.j.: Jointly optimized congestion control, forwarding strategy, and link scheduling in a named-data multihop wireless network. Front. Inf. Technol. Electron. Eng. 18(10), 1573–1590 (2017). https://doi.org/10.1631/fitee.16001585. URL https://link.springer.com/article/10.1631/fitee.16001585

  13. Kato, T., Bandai, M., Yamamoto, M.: A congestion control method for named data networking with hop-by-hop window-based approach. IEICE Trans. Commun. 2018EBP3045 (2018). https://doi.org/10.1587/transcom.2018EBP3045. URL https://www.jstage.jst.go.jp/article/transcom/advpub/0/advpub_2018EBP3045/_article/-char/ja/

  14. Ren, Y., Li, J., Shi, S., Li, L., Wang, G., Zhang, B.: Congestion control in named data networking—a survey. Comput. Commun. 86, 1–11 (2016). https://doi.org/10.1016/j.comcom.2016.04.017. URL http://www.sciencedirect.com/science/article/pii/S0140366416301566

  15. Arianfar, S., Nikander, P., Eggert, L., Ott, J.: ConTug: A receiver-driven transport protocol for content-centric networks. In: IEEE ICNP, vol. 2010 (2010)

    Google Scholar 

  16. Saino, L., Cocora, C., Pavlou, G.: CCTCP: A scalable receiver-driven congestion control protocol for content centric networking. In: 2013 IEEE International Conference on Communications (ICC), pp. 3775–3780 (2013). https://doi.org/10.1109/icc.2013.6655143

  17. Carofiglio, G., Gallo, M., Muscariello, L., Papali, M.: Multipath congestion control in content-centric networks. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 363–368 (2013). https://doi.org/10.1109/infcomw.2013.6970718

  18. Schneider, K., Yi, C., Zhang, B., Zhang, L.: A practical congestion control scheme for named data networking. In: Proceedings of the 3rd ACM Conference on Information-Centric Networking, ACM-ICN’16, pp. 21–30. ACM, New York, NY (2016). https://doi.org/10.1145/2984356.2984369. URL http://doi.acm.org/10.1145/2984356.2984369

  19. Carofiglio, G., Gallo, M., Muscariello, L.: Joint hop-by-hop and receiver-driven interest control protocol for content-centric networks. In: Proceedings of the Second Edition of the ICN Workshop on Information-Centric Networking, ICN’12, pp. 37–42. ACM, New York, NY (2012). https://doi.org/10.1145/2342488.2342497. URL http://doi.acm.org/10.1145/2342488.2342497

  20. Vusirikala, S., Mastorakis, S., Afanasyev, A., Zhang, L.: Hop-by-hop best effort link layer reliability in named data networking. Technical Report Technical Report NDN-0041, NDN (2015)

    Google Scholar 

  21. Mejri, S., Touati, H., Malouch, N., Kamoun, F.: Hop-by-hop congestion control for named data networks. In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp. 114–119 (2017). https://doi.org/10.1109/aiccsa.2017.36

  22. Rozhnova, N., Fdida, S.: An effective hop-by-hop interest shaping mechanism for CCN communications. In: 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 322–327 (2012). https://doi.org/10.1109/INFCOMW.2012.6193514

  23. Rozhnova, N., Fdida, S.: An extended hop-by-hop interest shaping mechanism for content-centric networking. In: 2014 IEEE Global Communications Conference, pp. 1–7 (2014). https://doi.org/10.1109/glocom.2014.7389766

  24. Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., Rhee, I.: An improved hop-by-hop interest shaper for congestion control in named data networking. SIGCOMM Comput. Commun. Rev. 43(4), 55–60 (2013). https://doi.org/10.1145/2534169.2491233. http://doi.acm.org/10.1145/2534169.2491233

  25. Park, H., Jang, H., Kwon, T.: Popularity-based congestion control in named data networking. In: 2014 Sixth International Conference on Ubiquitous and Future Networks (ICUFN), pp. 166–171 (2014). https://doi.org/10.1109/icufn.2014.6876774

  26. Lei, K., Hou, C., Li, L., Xu, K.: A rcp-based congestion control protocol in named data networking. In: 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp. 538–541 (2015). https://doi.org/10.1109/cyberc.2015.67

  27. Li, C., Huang, T., Xie, R., Zhang, H., Liu, J., Liu, Y.: A novel multi-path traffic control mechanism in named data networking. In: 2015 22nd International Conference on Telecommunications (ICT), pp. 60–66 (2015). https://doi.org/10.1109/ict.2015.7124658

  28. Kato, T., Bandai, M.: Congestion control avoiding excessive rate reduction in named data network. In: 2017 14th IEEE Annual Consumer Communications and Networking Conference, CCNC 2017, pp. 108–113 (2017). https://doi.org/10.1109/ccnc. 2017.7983090

  29. Kato, T., Bandai, M.: Avoiding excessive rate reduction in rate based congestion control for named data networking. J. Inf. Process. 26, 29–37 (2018). https://doi.org/10.2197/ipsjjip.26.29. URL https://www.jstage.jst.go.jp/article/ipsjjip/26/0/26_29/_article/-char/ja

  30. Carofiglio, G., Gallo, M., Muscariello, L.: ICP: Design and evaluation of an Interest control protocol for content-centric networking. In: 2012 Proceedings IEEE INFO-COM Workshops, pp. 304–309 (2012). https://doi.org/10.1109/infcomw.2012.6193510

  31. Salsano, S., Detti, A., Cancellieri, M., Pomposini, M., Blefari-Melazzi, N.: Transport-layer issues in information centric networks. In: Proceedings of the second edition of the ICN workshop on Information-centric networking, pp. 19–24. ACM, Helsinki, Finland (2012). https://doi.org/10.1145/2342488.2342493

  32. Fu, T., Li, Y., Lin, T., Tan, H., Tang, H., Ci, S.: An effective congestion control scheme in content-centric networking. In: 2012 13th International Conference on Parallel and Distributed Computing, Applications and Technologies, pp. 245–248 (2012). https://doi.org/10.1109/pdcat.2012.43

  33. Zhang, F., Zhang, Y., Reznik, A., Liu, H., Qian, C., Xu, C.: A transport protocol for content-centric networking with explicit congestion control. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–8 (2014). https://doi.org/10.1109/icccn.2014.6911765

  34. Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., Zhang, L.: A case for stateful forwarding plane. Comput. Commun. 36(7), 779–791 (2013). https://doi.org/10.1016/j.comcom.2013.01.005. URL www.sciencedirect.com/science/article/pii/S0140366413000236

  35. Ndikumana, A., Ullah, S., Thar, K., Tran, N.H., Park, B.J., Hong, C.S.: Novel co-operative and fully-distributed congestion control mechanism for content centric networking. IEEE Access 5, 27691–27706 (2017). https://doi.org/10.1109/access.2017.2778339

  36. Dabirmoghaddam, A., Dehghan, M., Garcia-Luna-Aceves, J.J.: Characterizing interest aggregation in content-centric networks. CoRR abs/1603.07995 (2016). URL http://arxiv.org/abs/1603.07995

  37. Abu, A.J., Bensaou, B., Abdelmoniem, A.M.: Leveraging the pending interest table occupancy for congestion control in CCN. Dubai, Arab United Emirates (2016)

    Google Scholar 

  38. Zhou, J., Wu, Q., Li, Z., Kaafar, M.A., Xie, G.: A proactive transport mechanism with explicit congestion notification for NDN. In: 2015 IEEE International Conference on Communications (ICC), pp. 5242–5247 (2015). https://doi.org/10.1109/icc.2015.7249156

  39. Ahlgren, B., Hurtig, P., Abrahamsson, H., Grinnemo, K.J., Brunstrom, A.: ICN congestion control for wireless links. In: 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6 (2018). https://doi.org/10.1109/wcnc.2018.8377396

  40. Zhang, F., Zhang, Y., Reznik, A., Liu, H., Qian, C., Xu, C.: Providing explicit congestion control and multi-homing support for content-centric networking transport. Comput. Commun. 69, 69–78 (2015). https://doi.org/10.1016/j.comcom.2015.06.019. URL http://www.sciencedirect.com/science/article/pii/S0140366415002352

  41. Wan, C.Y., Eisenman, S.B., Campbell, A.T.: CODA: congestion detection and avoidance in sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, SenSys’03, pp. 266–279. ACM, New York, NY (2003). https://doi.org/10.1145/958491.958523. URL http://doi.acm.org/10.1145/958491.958523

  42. Lehman, V., Gawande, A., Zhang, B., Zhang, L., Aldecoa, R., Krioukov, D., Wang, L.: An experimental investigation of hyperbolic routing with a smart forwarding plane in NDN. In: 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), pp. 1–10 (2016). https://doi.org/10.1109/iwqos.2016.7590394

  43. Ren, Y., Li, J., Shi, S., Li, L., Wang, G.: An explicit congestion control algorithm for named data networking. In: 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 294–299 (2016). https://doi.org/10.1109/infcomw.2016.756208

  44. Bouacherine, A., Senouci, M.R., Merabti, B.: Multipath forwarding in named data networking: flow, fairness, and context-awareness. In: Obaidat, M.S. (ed.) E-Business and Telecommunications, pp. 23–47. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farkhana Muchtar or Pradeep Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muchtar, F., Al-Adhaileh, M.H., Alubady, R., Singh, P.K., Ambar, R., Stiawan, D. (2020). Congestion Control for Named Data Networking-Based Wireless Ad Hoc Network. In: Singh, P., Pawłowski, W., Tanwar, S., Kumar, N., Rodrigues, J., Obaidat, M. (eds) Proceedings of First International Conference on Computing, Communications, and Cyber-Security (IC4S 2019). Lecture Notes in Networks and Systems, vol 121. Springer, Singapore. https://doi.org/10.1007/978-981-15-3369-3_10

Download citation

Publish with us

Policies and ethics