Skip to main content

T-Cell Activation and Differentiation: Role of Signaling and Metabolic Cross-Talk

  • Chapter
  • First Online:
Book cover Systems and Synthetic Immunology

Abstract

Different types of T effector cells function centrally in the immune-regulatory network, which acts as a line of defense for the body and elicits immune response during any diseased condition. At the molecular level, this functioning is maintained by an intricately designed network of signaling and metabolic pathways that function via multiple cross-talks to regulate complex immune responses during different antigenic challenges. These pathways regulate phenomena such as quiescence exit of naïve T cells, their activation, and differentiation into different effector T cells. Signaling properties of these T cells and their response to different cytokine signals have been well studied. Immune-metabolism is comparatively a new area of research that has been identified as driver for immune response. However, to gain a holistic understanding of the activation and differentiation of naïve T cells into the subtypes, the integration of signaling and metabolic pathway information is a prerequisite. The bidirectional mode of regulation between these cross-talking signaling and metabolic pathways governs the differentiation patterns. In this chapter, we review the activation and differentiation pattern of naïve T cells from both signaling and metabolic perspectives and also look into their cross-talk to understand their mutual regulation during differentiation into effector T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cruse JM, Lewis RE, Wang H (eds) (2004) Chapter 1 – Molecules, cells, and tissues of immunity. Immunology guidebook. Academic, San Diego, pp 1–15

    Google Scholar 

  2. Rabb H (2002) The T cell as a bridge between innate and adaptive immune systems: implications for the kidney. Kidney Int 61(6):1935–1946

    Article  CAS  PubMed  Google Scholar 

  3. Moticka EJ (2016) Chapter 20 – Activation of T lymphocytes and MHC restriction. A historical perspective on evidence-based immunology. Elsevier, Amsterdam, pp 169–179

    Google Scholar 

  4. Moticka EJ (2016) Chapter 37 – Tumor immunology. A historical perspective on evidence-based immunology. Elsevier, Amsterdam, pp 329–339

    Book  Google Scholar 

  5. Kara EE, Comerford I, Fenix KA, Bastow CR, Gregor CE, McKenzie DR et al (2014) Tailored immune responses: novel effector helper T cell subsets in protective immunity. PLoS Pathog 10(2):e1003905

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Moticka EJ (2016) Chapter 23 – T lymphocyte subpopulations. A historical perspective on evidence-based immunology. Elsevier, Amsterdam, pp 197–205

    Book  Google Scholar 

  7. Pearce EL, Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38(4):633–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zeng H, Chi H (2017) mTOR signaling in the differentiation and function of regulatory and effector T cells. Curr Opin Immunol 46:103–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ganeshan K, Chawla A (2014) Metabolic regulation of immune responses. Annu Rev Immunol 32:609–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Assmann N, Finlay DK (2016) Metabolic regulation of immune responses: therapeutic opportunities. J Clin Invest 126(6):2031–2039

    Article  PubMed  PubMed Central  Google Scholar 

  11. Patel CH, Leone RD, Horton MR, Powell JD (2019) Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nat Rev Drug Discov 18(9):669–688

    Article  CAS  PubMed  Google Scholar 

  12. Jung J, Zeng H, Horng T (2019) Metabolism as a guiding force for immunity. Nat Cell Biol 21(1):85–93

    Article  CAS  PubMed  Google Scholar 

  13. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13:257

    Article  CAS  PubMed  Google Scholar 

  14. Ware CF (2008) Targeting lymphocyte activation through the lymphotoxin and LIGHT pathways. Immunol Rev 223:186–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ (2009) Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev 229(1):152–172

    Article  CAS  PubMed  Google Scholar 

  16. Munroe ME, Bishop GA (2007) A Costimulatory function for T cell CD40. J Immunol 178(2):671–682

    Article  CAS  PubMed  Google Scholar 

  17. Redmond WL, Ruby CE, Weinberg AD (2009) The role of OX40-mediated co-stimulation in T cell activation and survival. Crit Rev Immunol 29(3):187–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Croft M, So T, Duan W, Soroosh P (2009) The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 229(1):173–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ledbetter JA, Deans JP, Aruffo A, Grosmaire LS, Kanner SB, Bolen JB et al (1993) CD4, CD8 and the role of CD45 in T-cell activation. Curr Opin Immunol 5(3):334–340

    Article  CAS  PubMed  Google Scholar 

  20. Chen L, Flies DB (2013) Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 13(4):227–242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690

    Article  CAS  PubMed  Google Scholar 

  22. Baine I, Abe Brian T, Macian F (2009) Regulation of T-cell tolerance by calcium/NFAT signaling. Immunol Rev 231(1):225–240

    Article  CAS  PubMed  Google Scholar 

  23. Nakaya M, Xiao Y, Zhou X, Chang J-H, Chang M, Cheng X et al (2014) Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40(5):692–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palmer CS, Ostrowski M, Balderson B, Christian N, Crowe SM (2015) Glucose metabolism regulates T cell activation, differentiation, and functions. Front Immunol 6:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12(5):325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chapman NM, Boothby MR, Chi H (2020) Metabolic coordination of T cell quiescence and activation. Nat Rev Immunol 20:55–70

    Google Scholar 

  27. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC et al (2018) Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 175(7):1780–95.e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dodd KM, Tee AR (2012) Leucine and mTORC1: a complex relationship. Am J Physiol Endocrinol Metab 302(11):E1329–42

    Google Scholar 

  29. Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A et al (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9(10):1069

    Article  CAS  PubMed  Google Scholar 

  30. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R et al (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4(12):1206

    Article  CAS  PubMed  Google Scholar 

  31. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T et al (2016) L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167(3):829–42.e13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao Y, Hu X, Liu Y, Dong S, Wen Z, He W et al (2017) ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway. Mol Cancer 16(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Franchina DG, Dostert C, Brenner D (2018) Reactive oxygen species: involvement in T cell signaling and metabolism. Trends Immunol 39(6):489–502

    Article  CAS  PubMed  Google Scholar 

  34. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luckheeram RV, Zhou R, Verma AD, Xia B (2012) CD4+T cells: differentiation and functions. Clin Dev Immunol 2012:925135

    Google Scholar 

  36. Hawse WF, Cattley RT (2019) T cells transduce T-cell receptor signal strength by generating different phosphatidylinositols. J Biol Chem 294(13):4793–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamane H, Paul WE (2013) Early signaling events that underlie fate decisions of naive CD4(+) T cells towards distinct T-helper cell subsets. Immunol Rev 252(1):12–23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Peter C, Waldmann H, Cobbold SP (2010) mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol 22(5):655–661

    Article  CAS  PubMed  Google Scholar 

  39. MacIver NJ, Michalek RD, Rathmell JC (2013) Metabolic regulation of T lymphocytes. Annu Rev Immunol 31:259–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klysz D, Tai X, Robert PA, Craveiro M, Cretenet G, Oburoglu L et al (2015) Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci Signal 8(396):ra97

    Google Scholar 

  41. Mak TW, Grusdat M, Duncan GS, Dostert C, Nonnenmacher Y, Cox M et al (2017) Glutathione primes T cell metabolism for inflammation. Immunity 46(4):675–689

    Article  CAS  PubMed  Google Scholar 

  42. Stark JM, Tibbitt CA, Coquet JM (2019) The metabolic requirements of Th2 cell differentiation. Front Immunol 10:2318

    Article  PubMed  PubMed Central  Google Scholar 

  43. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG et al (2016) Foxp3 and Toll-like receptor signaling balance T reg cell anabolic metabolism for suppression. Nat Immunol 17(12):1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH et al (2017) Foxp3 reprograms T cell metabolism to function in low-glucose, high-lactate environments. Nat Immunol 25(6):1282–93.e7

    CAS  Google Scholar 

  45. Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P et al (2014) Plasticity of human CD4 T cell subsets. Front Immunol 5:630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pollizzi KN, Powell JD (2015) Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol 36(1):13–20

    Article  CAS  PubMed  Google Scholar 

  47. Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12(9):888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105(22):7797–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Macintyre AN, Gerriets VA, Nichols AG, Michalek RD, Rudolph MC, Deoliveira D et al (2014) The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab 20(1):61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35(6):871–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang K, Shrestha S, Zeng H, Karmaus PW, Neale G, Vogel P et al (2013) T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39(6):1043–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tan H, Yang K, Li Y, Shaw TI, Wang Y, Blanco DB et al (2017) Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46(3):488–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125(1):194–207

    Article  PubMed  Google Scholar 

  54. Blagih J, Coulombe F, Vincent EE, Dupuy F, Galicia-Vázquez G, Yurchenko E et al (2015) The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 42(1):41–54

    Article  CAS  PubMed  Google Scholar 

  55. Mossmann D, Park S, Hall MN (2018) mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat Rev Cancer 18(12):744–757

    Article  CAS  PubMed  Google Scholar 

  56. Buck MD, O’sullivan D, Pearce EL (2015) T cell metabolism drives immunity. J Exp Med 212(9):1345–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ (2016) The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 16(11):718

    Article  CAS  PubMed  Google Scholar 

  58. Doerig C, Rayner JC, Scherf A, Tobin AB (2015) Post-translational protein modifications in malaria parasites. Nat Rev Microbiol 13(3):160–172

    Article  CAS  PubMed  Google Scholar 

  59. Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R et al (2015) Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell 162(6):1217–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang F, Beck-García K, Zorzin C, Schamel WW, Davis MM (2016) Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol. Nat Immunol 17(7):844–50

    Google Scholar 

  61. Demetriou M, Granovsky M, Quaggin S, Dennis JW (2001) Negative regulation of T-cell activation and autoimmunity by Mgat5N-glycosylation. Nature 409(6821):733–9

    Google Scholar 

  62. Lee K, Gudapati P, Dragovic S, Spencer C, Joyce S, Killeen N et al (2010) Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32(6):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR et al (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16(6):769–777

    Article  CAS  PubMed  Google Scholar 

  64. Kimura MY, Pobezinsky LA, Guinter TI, Thomas J, Adams A, Park J-H et al (2013) IL-7 signaling must be intermittent, not continuous, during CD8+ T cell homeostasis to promote cell survival instead of cell death. Nat Immunol 14(2):143–51

    Google Scholar 

  65. Jacobs SR, Herman CE, MacIver NJ, Wofford JA, Wieman HL, Hammen JJ et al (2008) Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 180(7):4476–4486

    Article  CAS  PubMed  Google Scholar 

  66. Sinclair LV, Rolf J, Emslie E, Shi Y-B, Taylor PM, Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14(5):500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen Y-C et al (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337(6090):96–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR et al (2011) HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208(7):1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sinclair LV, Neyens D, Ramsay G, Taylor PM, Cantrell DA (2018) Single cell analysis of kynurenine and System L amino acid transport in T cells. Nat Commun 9(1):1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Baixauli F, Acín-Pérez R, Villarroya-Beltrí C, Mazzeo C, Nuñez-Andrade N, Gabandé-Rodriguez E et al (2015) Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab 22(3):485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G et al (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19(4):571–582

    Article  CAS  PubMed  Google Scholar 

  72. Adriouch S, Hubert S, Pechberty S, Koch-Nolte F, Haag F, Seman M (2007) NAD+ released during inflammation participates in T cell homeostasis by inducing ART2-mediated death of naive T cells in vivo. J Immunol 179(1):186–194

    Article  CAS  PubMed  Google Scholar 

  73. Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA et al (2016) Oxygen sensing by T cells establishes an immunologically tolerant metastatic niche. Cell 166(5):1117–31.e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tarasenko TN, Pacheco SE, Koenig MK, Gomez-Rodriguez J, Kapnick SM, Diaz F et al (2017) Cytochrome c oxidase activity is a metabolic checkpoint that regulates cell fate decisions during T cell activation and differentiation. Cell Metab 25(6):1254–68.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA et al (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38(2):225–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y et al (2016) An essential role for the IL-2 receptor in T reg cell function. Nat Immunol 17(11):1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang K, Blanco DB, Neale G, Vogel P, Avila J, Clish CB et al (2017) Homeostatic control of metabolic and functional fitness of T reg cells by LKB1 signalling. Nature 548(7669):602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zeiser R, Maas K, Youssef S, Dürr C, Steinman L, Negrin RSJI (2009) Regulation of different inflammatory diseases by impacting the mevalonate pathway. Immunology 127(1):18–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM et al (2015) Control of PI (3) kinase in T reg cells maintains homeostasis and lineage stability. Nat Immunol 16(2):188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tyrakis PA, Palazon A, Macias D, Lee KL, Phan AT, Veliça P et al (2016) S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature 540(7632):236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kidani Y, Elsaesser H, Hock MB, Vergnes L, Williams KJ, Argus JP et al (2013) Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 14(5):489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bensinger SJ, Bradley MN, Joseph SB, Zelcer N, Janssen EM, Hausner MA et al (2008) LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134(1):97–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Angela M, Endo Y, Asou HK, Yamamoto T, Tumes DJ, Tokuyama H et al (2016) Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat Commun 7:13683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Munn DH, Sharma MD, Baban B, Harding HP, Zhang Y, Ron D et al (2005) GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2, 3-dioxygenase. Immunity 22(5):633–642

    Article  CAS  PubMed  Google Scholar 

  85. Chang C-H, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’Sullivan D et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153(6):1239–1251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57

    Article  PubMed  CAS  Google Scholar 

  87. Huang DW, Sherman BT, Lempicki RA (2008) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13

    Article  PubMed Central  CAS  Google Scholar 

  88. Carmona-Saez P, Chagoyen M, Tirado F, Carazo JM, Pascual-Montano A (2007) GENECODIS: a web-based tool for finding significant concurrent annotations in gene lists. Genome Biol 8(1):R3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Croft D, Mundo AF, Haw R, Milacic M, Weiser J, Wu G et al (2013) The Reactome pathway knowledgebase. Nucleic Acids Res. 42(D1):D472–D477

    Google Scholar 

  91. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf Anna C et al (2013) Spatiotemporal dynamics of Intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39(4):782–795

    Article  CAS  PubMed  Google Scholar 

  92. Fridman WH, Pagès F, Sautès-Fridman C, Galon J (2012) The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 12:298

    Article  CAS  PubMed  Google Scholar 

  93. Dillon LAL, Suresh R, Okrah K, Corrada Bravo H, Mosser DM, El-Sayed NM (2015) Simultaneous transcriptional profiling of Leishmania major and its murine macrophage host cell reveals insights into host-pathogen interactions. BMC Genomics 16:1108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Favila MA, Geraci NS, Zeng E, Harker B, Condon D, Cotton RN et al (2014) Human dendritic cells exhibit a pronounced type I IFN signature following Leishmania major infection that is required for IL-12 induction. J Immunol 192(12):5863–5872

    Article  CAS  PubMed  Google Scholar 

  95. Chowdhury S, Sarkar RR (2015) Comparison of human cell signaling pathway databases—evolution, drawbacks and challenges. Database 2015:bau126

    Google Scholar 

  96. Sherriff MR, Sarkar RR (2008) Computational approaches and modelling of signaling processes in immune system. Proc Indian Natl Sci Acad 74:187–200

    Google Scholar 

  97. Chowdhury S, Sinha N, Ganguli P, Bhowmick R, Singh V, Nandi S et al BIOPYDB: a dynamic human cell specific biochemical pathway database with advanced computational analyses platform. J Integr Bioinform 15(3):20170072

    Google Scholar 

  98. Trupp M, Altman T, Fulcher CA, Caspi R, Krummenacker M, Paley S et al (2010) Beyond the genome (BTG) is a (PGDB) pathway genome database: HumanCyc. Genome Biol 11(1):O12

    Article  PubMed Central  Google Scholar 

  99. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic information. Nucleic Acids Res 30(1):47–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Euler L (1736) Commentarii Academiae Scientiarum Imperialis Petropolitanae 8:128

    Google Scholar 

  101. Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440

    Article  CAS  PubMed  Google Scholar 

  102. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

  103. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2010) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3):431–432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. Third international AAAI conference on weblogs and social media.

    Google Scholar 

  105. Batagelj V, Mrvar A (1998) Pajek-program for large network analysis. Connect 21(2):47–57

    Google Scholar 

  106. Pavlopoulos GA, Secrier M, Moschopoulos CN, Soldatos TG, Kossida S, Aerts J et al (2011) Using graph theory to analyze biological networks. BioData Min 4(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bromberg KD, Ma’ayan A, Neves SR, Iyengar R (2008) Design logic of a cannabinoid receptor signaling network that triggers neurite outgrowth. Science 320(5878):903–909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ghosh S, Kumar GV, Basu A, Banerjee A (2015) Graph theoretic network analysis reveals protein pathways underlying cell death following neurotropic viral infection. Sci Rep 5:14438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Chowdhury S, Pradhan RN, Sarkar RR (2013) Structural and logical analysis of a comprehensive hedgehog signaling pathway to identify alternative drug targets for glioma, colon and pancreatic cancer. PLoS One 8(7):e69132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Chowdhury S, Sarkar R (2013) Drug targets and biomarker identification from computational study of human notch signaling pathway. Clin Exp Pharmacol 3(137):2161–1459

    Google Scholar 

  111. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 22(3):437–467

    Article  CAS  PubMed  Google Scholar 

  112. Müssel C, Hopfensitz M, Kestler HA (2010) BoolNet—an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 26(10):1378–1380

    Article  PubMed  CAS  Google Scholar 

  113. Albert I, Thakar J, Li S, Zhang R, Albert R (2008) Boolean network simulations for life scientists. Source code for biology and medicine. Source Code Biol Med 3(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Klamt S, Saez-Rodriguez J, Gilles ED (2007) Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 1(1):2

    Article  PubMed  PubMed Central  Google Scholar 

  115. Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B et al (2007) A logical model provides insights into T cell receptor signaling. PLOS Comp Biol 3(8):e163

    Article  CAS  Google Scholar 

  116. Ganguli P, Chowdhury S, Bhowmick R, Sarkar RR (2015) Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: a computational study. J Biosci 40(4):769–789

    Article  CAS  PubMed  Google Scholar 

  117. Ganguli P, Chowdhury S, Chowdhury S, Sarkar RR (2015) Identification of Th1/Th2 regulatory switch to promote healing response during leishmaniasis: a computational approach. EURASIP J Bioinform Syst Biol 2015(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  118. Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010) Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLOS Comp Biol 6(9):e1000912

    Article  CAS  Google Scholar 

  119. Carbo A, Hontecillas R, Kronsteiner B, Viladomiu M, Pedragosa M, Lu P et al (2013) Systems modeling of molecular mechanisms controlling cytokine-driven CD4+ T cell differentiation and phenotype plasticity. PLOS Comp Biol 9(4):e1003027

    Article  CAS  Google Scholar 

  120. Puniya BL, Todd RG, Mohammed A, Brown DM, Barberis M, Helikar T (2018) A mechanistic computational model reveals that plasticity of CD4+ T cell differentiation is a function of cytokine composition and dosage. Front Physiol 9:878

    Article  PubMed  PubMed Central  Google Scholar 

  121. Kelly PN (2019) Metabolism as a driver of immune response. Science 363(6423):137–139

    Google Scholar 

  122. Price ND, Reed JL, Palsson BØ (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol 2(11):886

    Article  CAS  PubMed  Google Scholar 

  123. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299

    Article  PubMed  PubMed Central  Google Scholar 

  124. Orth JD, Palsson BØ (2010) Systematizing the generation of missing metabolic knowledge. Biotechnol Bioeng 107(3):403–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. O’Brien EJ, Monk JM, Palsson BO (2015) Using genome-scale models to predict biological capabilities. Cell 161(5):971–987

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bordbar A, Monk JM, King ZA, Palsson BO (2014) Constraint-based models predict metabolic and associated cellular functions. Nat Rev Genet 15(2):107–120

    Article  CAS  PubMed  Google Scholar 

  127. Patil KR, Nielsen J (2005) Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc Natl Acad Sci U S A 102(8):2685–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. AbuOun M, Suthers PF, Jones GI, Carter BR, Saunders MP, Maranas CD et al (2009) Genome scale reconstruction of a salmonella metabolic model comparison of similarity and differences with a commensal Escherichia coli strain. J Biol Chem 284(43):29480–29488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: a computational framework for redesign of microbial production systems. Genome Res 14(11):2367–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pharkya P, Maranas CD (2006) An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab Eng 8(1):1–13

    Article  CAS  PubMed  Google Scholar 

  131. Förster J, Famili I, Fu P, Palsson BØ, Nielsen J (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13(2):244–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BØ, Herrgard MJ (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2(3):727

    Article  CAS  PubMed  Google Scholar 

  134. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR (2013) COBRApy: constraints-based reconstruction and analysis for python. BMC Syst Biol 7(1):74

    Article  PubMed  PubMed Central  Google Scholar 

  135. Steffensen JL, Dufault-Thompson K, Zhang Y (2016) PSAMM: a portable system for the analysis of metabolic models. PLoS Comput Biol 12(2):e1004732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Rocha I, Maia P, Evangelista P, Vilaça P, Soares S, Pinto JP et al (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4(1):45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Grafahrend-Belau E, Klukas C, Junker BH, Schreiber F (2009) FBA-SimVis: interactive visualization of constraint-based metabolic models. Bioinformatics 25(20):2755–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. König M, Holzhütter H-G (2010) Fluxviz—Cytoscape plug-in for visualization of flux distributions in networks. Genome Inform 24:96–103

    PubMed  Google Scholar 

  139. Marmiesse L, Peyraud R, Cottret L (2015) FlexFlux: combining metabolic flux and regulatory network analyses. BMC Syst Biol 9(1):93

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Kirchmair J, Williamson MJ, Afzal AM, Tyzack JD, Choy AP, Howlett A et al (2013) FAst MEtabolizer (FAME): a rapid and accurate predictor of sites of metabolism in multiple species by endogenous enzymes. J Chem Inf Model 53(11):2896–2907

    Article  CAS  PubMed  Google Scholar 

  141. Rowe E, Palsson BO, King ZA (2018) Escher-FBA: a web application for interactive flux balance analysis. BMC Syst Biol 12(1):84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F (2015) Cancer evolution: mathematical models and computational inference. Syst Biol 64(1):e1-25

    Article  PubMed  CAS  Google Scholar 

  143. Banerjee S, Sarkar RR (2008) Delay-induced model for tumor-immune interaction and control of malignant tumor growth. Biosystems 91(1):268–288

    Article  CAS  PubMed  Google Scholar 

  144. d’Onofrio A, Gatti F, Cerrai P, Freschi L (2010) Delay-induced oscillatory dynamics of tumour–immune system interaction. Math Comput Model 51(5–6):572–591

    Article  Google Scholar 

  145. dePillis L, Caldwell T, Sarapata E, Williams H (2013) Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete Cont Dyn-B 18(4):915–943

    Google Scholar 

  146. d’Onofrio A (2008) Metamodeling tumor–immune system interaction, tumor evasion and immunotherapy. Math Comput Model 47(5–6):614–637

    Article  Google Scholar 

  147. Leder K, Pitter K, Laplant Q, Hambardzumyan D, Ross BD, Chan TA et al (2014) Mathematical modeling of PDGF-driven glioblastoma reveals optimized radiation dosing schedules. Cell 156(3):603–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Robertson-Tessi M, El-Kareh A, Goriely A (2012) A mathematical model of tumor-immune interactions. J Theor Biol 294:56–73

    Article  CAS  PubMed  Google Scholar 

  149. Powathil GG, Adamson DJ, Chaplain MA (2013) Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: clinical insights from a computational model. PLoS Comput Biol 9(7):e1003120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Kirschner D, Panetta JC (1998) Modeling immunotherapy of the tumor–immune interaction. JMB 37(3):235–252

    CAS  Google Scholar 

  151. de Pillis LG, Radunskaya AE, Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res 65(17):7950

    Article  PubMed  Google Scholar 

  152. Ganguli P, Sarkar RR (2018) Exploring immuno-regulatory mechanisms in the tumor microenvironment: model and design of protocols for cancer remission. PLoS One 13(9):e0203030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Chew YH, Shia YL, Lee CT, Majid FAA, Chua LS, Sarmidi MR et al (2009) Modeling of glucose regulation and insulin-signaling pathways. Mol Cell Endocrinol 303(1–2):13–24

    Article  CAS  PubMed  Google Scholar 

  154. Reed MC, Thomas RL, Pavisic J, James SJ, Ulrich CM, Nijhout HF et al (2008) A mathematical model of glutathione metabolism. J Theor Biol 5(1):8

    Google Scholar 

  155. Lawley SD, Yun J, Gamble MV, Hall MN, Reed MC, Nijhout HF et al (2014) Mathematical modeling of the effects of glutathione on arsenic methylation. J Theor Biol 11(1):20

    Google Scholar 

  156. Nijhout HF, Best JA, Reed MC (2015) Using mathematical models to understand metabolism, genes, and disease. BMC Biol 13(1):79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Kauffman KJ, Prakash P, Edwards JS (2003) Advances in flux balance analysis. J Coib 14(5):491–496

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Rup Sarkar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhowmick, R., Ganguli, P., Sarkar, R.R. (2020). T-Cell Activation and Differentiation: Role of Signaling and Metabolic Cross-Talk. In: Singh, S. (eds) Systems and Synthetic Immunology . Springer, Singapore. https://doi.org/10.1007/978-981-15-3350-1_6

Download citation

Publish with us

Policies and ethics