Skip to main content

Heat Generation and Transfer of Motorized Spindle

  • Chapter
  • First Online:
Intelligent Motorized Spindle Technology

Part of the book series: Springer Tracts in Mechanical Engineering ((STME))

  • 266 Accesses

Abstract

Heat generation is inevitable in motorized spindle. A large amount of heat is generated in the spindle under the combined effects of internal and external heat sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gmyrek Z, Boglietti A, Cavagnino A et al (2010) Estimation of iron losses in induction motors: calculation method, results, and analysis. IEEE Trans Ind Electron 57(1):161–171

    Article  Google Scholar 

  2. Zhao HS, Liu XF, Luo YL (2010) Loss characteristics of cage induction motors under voltage deviation conditions. J Electr Mach Control 14(5):13–19

    Google Scholar 

  3. Huang PL, Hu QS, Cui Y et al (2007) Analytical calculation of motor core loss under PWM inverter power supply. Chin Soc Electr Eng 27(12):19–23

    Google Scholar 

  4. Zeng LQ, Wu H, Li H (2011) The influence of output harmonics of PWM inverter on the loss of asynchronous motor. Micro-motor 4(44):68–71

    Google Scholar 

  5. Luo C, Wang XY, Ning PQ (2006) Rotor loss of 12-phase high speed asynchronous generator. J Tsinghua Univ (Natural Science Edition) 46(1):9–12

    Google Scholar 

  6. Cen ZQ (1996) Design problem of three phase variable frequency and speed regulation asynchronous motor. Motor Technol 2:23

    Google Scholar 

  7. Zhang LX, Wu YH, Wang LY (2011) Analysis on the influence of vibration performance of air-gap of ceramic motorized spindle. Trans Tech Publications, Chengdu, China

    Article  Google Scholar 

  8. Zhang LX, Wu YH, Wang LY et al (2012) The effect of air gap eccentricity on the rotor system of ceramic electric spindle. Mech Sci Technol 31(9):1512–1515 + 1521

    Google Scholar 

  9. Ma P, Zhou B, Li DN et al (2011) Thermal analysis of high speed built-in spindle by finite element method. Adv Mater Res 188:596–601

    Article  Google Scholar 

  10. Wu YH, Tian F, Albert JS, et al (2012) Design and experimental analysis of temperature detection module of all ceramic electric spindle based on LabVIEW. Mach Tool Hydraul 17:60–63

    Google Scholar 

  11. Holkup T, Cao H, Kolář P et al (2010) Thermo-mechanical model of spindles. CIRP Ann Manuf Technol 59(1):365–368

    Article  Google Scholar 

  12. Ge XS (2007) Basic principles of heat transfer and mass transfer. Chemical Industry Press, Beijing, China

    Google Scholar 

  13. Li CP, Cai F, Cheng SK (2012) The effect of cooling water flow rate on the temperature rise of automotive water-cooled motor. J Electr Mach Control 16(9):1–8

    Google Scholar 

  14. Wang YF, Sun QG, Lv HB (2014) Comparative study on temperature field of oil bearing lubrication and injection lubrication of rolling bearings. Lubr Seal 39(2):66–70

    Google Scholar 

  15. Li SX, Zhao B, Bao YP et al (2012) Simulation analysis of thermal characteristics of high-speed electric spindle. Tool Technol 4:64–32

    Google Scholar 

  16. Liu JX (2009) Virtual simulation analysis of temperature field of AD1130 electric spindle. Journal of Henan Mechanical and Electrical College 6(17):71–74

    Google Scholar 

  17. Yu L, Wei YG, Shang YQ (2006) Thermal engineering and fluid mechanics. China Electric Power Press, Beijing, China

    Google Scholar 

  18. Staton DA, Cavagnino A et al (2008) Convection heat transfer and flow calculations suitable for electric machines thermal models. IEEE Trans Ind Electron 55(10):3509–3516

    Article  Google Scholar 

  19. Xu ZL (2001) A brief tutorial on elastic mechanics. Higher Education Press, Beijing, China

    Google Scholar 

  20. Li SX, Zhao B, Bao YP et al (2012) Simulation analysis of thermal characteristics of high-speed electric spindle. Tool Technol 46(8):17–20

    Google Scholar 

  21. Zhang LX, Liu XH (2012) Modeling and simulation analysis of motorized spindle vector control. International Conference on Mechatronics and Intelligent Materials (MIM), GuiLin, China

    Google Scholar 

  22. Zhang K, Tong J, Xu XH et al (2007) Modeling and simulation of high-speed electric spindle direct torque control system. J Shenyang Jianzhu Univ Nat Sci, 04:664–667

    Google Scholar 

  23. Zhang K, Xu XH, Wang LJ, Wu YH (2006) Design of direct torque control system for high speed electric spindle under PMAC2. J Shenyang Jianzhu Univ Nat Sci 04:691–695

    Google Scholar 

  24. Xie LH, Zhao XY (2012) Fluid analysis and simulation of Ansys CFX. Electronic Industry Press, Beijing, China

    Google Scholar 

  25. Uhlmann E, Hu J et al (2012) Thermal modelling of a hing speed motor spindle. In: 5th CIRP conference on high performance cutting 2012, pp 313–318

    Google Scholar 

  26. Zhang JW, Yang ZY, Zhang Z (2009) The foundation and application of numerical simulation of fluid flow and heat transfer process, vol 1. Chemical Industry Press, pp 13–36

    Google Scholar 

  27. Fei YT (2009) Mechanical thermal deformation theory and application. National Defense Industry Press, Beijing, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhou Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, Y., Zhang, L. (2020). Heat Generation and Transfer of Motorized Spindle. In: Intelligent Motorized Spindle Technology. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-3328-0_3

Download citation

Publish with us

Policies and ethics