Skip to main content

Induced Immunity Developed by Trichoderma Species in Plants

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

One of the most interesting and important microorganisms in nature is Trichoderma, which, from being a mycoparasitic biocontrol agent (BCA), has now emerged as one with multiple traits such as antagonism to pathogen, competition with pathogens for nutrients, induction of systemic resistance in the host, overall plant growth promotion and also alleviation of abiotic stresses. Besides, interestingly, though they were reported earlier as soil and root colonizers only, it is now evident that several species of Trichoderma are endophytic. Interactions between plant and Trichoderma involve recognition, penetration, attachment and colonization and, finally, nutrient transfer from the root. Appressoria-like structures have been reported to be formed by Trichoderma which helps in root penetration, and two proteins TasHyd1 and qid74 were found to mediate the attachment of appressoria to the roots. Trichoderma produces a large number of secondary metabolites such as xylanases, cellulases, polygalacturonases, cerato-platanins, swollenins, peptaibols, 6-pentyl-α-pyrones and trichothecenes. These secondary metabolites help Trichoderma in various capacities, such as cell wall-degrading enzymes, elicitors and antimicrobial compounds. Trichoderma can trigger plant resistance towards pathogen attack by inducing plant immune response. Trichoderma viride, T. harzianum, T. virens, T. aureoviride and T. asperellum are being used as microbial inducers of plant immunity. An immunity-inducing protein (Sm1/Ep11) of the cerato-platanin family and elicitor produced by Trichoderma increase the expression of genes involved in defence, which in turn induces immunity. Trichoderma spp. release microbe-associated molecular patterns (MAMPs) required for molecular recognition leading to a signal cascade within the plant involving signalling molecules such as salicylic acid (SA), jasmonate (JA) and ethylene (ET). The defence responses triggered by Trichoderma, both locally and systemically, include enhanced accumulation of PR proteins, phytoalexins and terpenoids and enhanced activities of several enzymes such as phenylalanine ammonia lyase, peroxidase, polyphenol oxidase and lipoxygenase. Activation of such defence responses finally leads to crop protection through induced resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas A, Jiang D, Fu Y (2017) Trichoderma spp. as antagonist of Rhizoctonia solani. J Plant Pathol Microbiol 8:402

    Google Scholar 

  • Ahmed AS, Sanchez CP, Candela ME (2000) Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzianum and its relation with capsidiol accumulation. Eur J Plant Pathol 106:817–824

    Article  Google Scholar 

  • Alfano G, Ivey ML, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitnik HA (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Allay S, Chakraborty BN (2010) Activation of defence response of mandarin plats against Fusarium root rot diseases using Glomus mosseae and Trichoderma hamatum. J Mycol Plant Pathol 40:499–511

    CAS  Google Scholar 

  • Allay S, Chakraborty BN (2013) Induction of resistance in Citrus reticulata against Fusarium solani by dual application of AMF and Trichoderma asperellum. Int. J. Bioresour Stress Manag 4:588–592

    Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim SH, Strem MD (2009) The beneficial endophyte Trichoderma hamatum isolate DIS219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60:3279–3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigirimana J, de Meyer G, Poppe J, Elad Y, Hofte M (1997) Induction of systemic resistance on bean (Phaseolus vulgaris) by Trichoderma harzianum. Med Fac Landbouww Univ Gent 62:1001–1007

    Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern recognition receptors. Annu Rev Plant Biol 60:379–406

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146

    Article  CAS  PubMed  Google Scholar 

  • Brotman Y, Landau U, Cuadros-Inostroza A (2013) Trichoderma plant root colonization: escaping early plant defence responses and activation of the antioxidant machinery for saline stress tolerance. PLoS Pathog 9:e1003221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoza RE, Malmierca MG, Hermosa MR, Alexander NJ, McCormick SP, Proctor RH, Tijerino AM, Rumbero A, Monte E, Gutiérrez S (2011) Identification of loci and functional characterization of trichothecene biosynthesis genes in filamentous fungi of the genus Trichoderma. Appl Environ Microbiol 77:4867–4877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casas-Flores S, Rios-Momberg M, Rosales-Saavedra T, Martinez-Hernandez P, Olmedo-Monfil V, Herrera-Estrella A (2006) Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón MR, Rodriguez-Galan O, Benítez T, Sousa S, Rey M, Llobell A, Delgado-Jarana J (2007) Microscopic and transcriptome analyses of early colonization of tomato roots by Trichoderma harzianum. Int Microbiol 10:19–27

    PubMed  Google Scholar 

  • Chakraborty BN (2005a) Antimicrobial proteins in plant defence. In: Chakravorti SS (ed) New perspectives in the frontiers of chemical research. Royal Society of Chemistry (EIS), Kolkata, pp 470–483

    Google Scholar 

  • Chakraborty U (2005b) Formation and scavenging of active oxygen species in plants. In: Chakravorti SS (ed) New perspectives in the frontiers of chemical research. Royal Society of Chemistry (EIS), Kolkata, pp 497–507

    Google Scholar 

  • Chakraborty BN (2012) Recognition of fungi and activation of defence responses in plants. In: Sigh HP, Chowdappa P, Chakraborty BN, Podile AR (eds) Molecular approaches for plant fungal disease management. Westville Publishing House, New Delhi, pp 70–95

    Google Scholar 

  • Chakraborty BN (2016) Scoping the potential uses of beneficial microorganisms for biopesticide industry and entrepreneurship development in crop protection. In: Chowdappa P, Sharma P, Singh D, Misra AK (eds) Perspectives of Plant Pathology in genomic era. Indian Phytopathological Society, IARI, New Delhi, pp 607–627

    Google Scholar 

  • Chakraborty BN, Chakraborty U (2008) Involvement of salicylic acid in plant defence against stresses. In: Khan NA, Singh S (eds) Abiotic stresses in plants. International Publishers, New Delhi, pp 233–246

    Google Scholar 

  • Chakraborty BN, Chakraborty U (2018) Tea diseases: early detection and their management strategies. In: Das S, Dutta S, Chakraborty BN, Singh D (eds) Recent approaches for management of plant diseases. Indian Phytopathological Society, IARI, New Delhi, pp 175–208

    Google Scholar 

  • Chakraborty BN, Sharma M (2008) Pathogenesis related proteins in plant defence. In: Reddy SM, Gour HN (eds) Review of plant pathology, vol 4. Scientific Publishers, Jodhpur, pp 105–138

    Google Scholar 

  • Chakraborty BN, Chakraborty U, Dey PL (2011) Potential application of Trichoderma as biocontrol agents, their molecular characterization and diversity analysis. In: Singh A (ed) Plant diseases and their biological control. Aavishkar Publishers, Jaipur, pp 186–216

    Google Scholar 

  • Chakraborty BN, Chakraborty U, Sunar K, Dey PL (2014) Harnessing beneficial microbial resources for crop improvement. In: Sigh DP, Singh HB (eds) Trends in soil Microbial ecology. Studium Press LLC, Houston, TX, pp 175–201

    Google Scholar 

  • Chakraborty BN, Chakraborty U, Allay S (2019) Wilt root rot complex in mandarin plants and activation of defence against pathogen. In: Bhattacharyya A, Chakraborty BN, Pandey RN, Singh D, Dubey SC (eds) Wilt diseases of crops. Indian Phytopathological Society, IARI, New Delhi, pp 293–321

    Google Scholar 

  • Chowdhury AK, Debnath A, Roy A, Bhattacharya PM, Chattopadhyay C (2017) Biological control in 21st century: opportunities and challenges in subsistence farming system in India. In: Pandey RN, Chakraborty BN, Singh D, Sharma P (eds) Microbial antagonists: role in biological control of plant diseases. Indian Phytopathological Society, IARI, New Delhi, pp 39–66

    Google Scholar 

  • Cong D, Li Y, Xian H (2012) Purification, renaturation and characterization of chitinase gene from Trichoderma asperellum. Chin Agric Sci Bull 28:34–38

    Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal and camalexin dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungus Botrytis cinerea. Plant Signal Behav 6:1554–1563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras-Cornejo HA, Macías-Rodríguez L, Del-Val E, Larsen J (2016) Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiol Ecol 92:fiw036

    Article  PubMed  CAS  Google Scholar 

  • De Lorenzo G, Brutus A, Savatin DV, Sicilia F, Cervone F (2011) Engineering plant resistance by constructing chimeric receptors that recognize damage-associated molecular patterns (DAMPs). FEBS Lett 585:1521–1528

    Article  PubMed  CAS  Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defence responses and systemic resistance. Mol Plant Microbe Interact 19:838–853

    Article  CAS  PubMed  Google Scholar 

  • Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Freitas RS, Steindorff AS, Ramada MH, de Siqueira SJ, Noronha EF, Ulhoa CJ (2014) Cloning and characterization of a protein elicitor Sm1 gene from Trichoderma harzianum. Biotechnol Lett 36:783–788

    Article  CAS  PubMed  Google Scholar 

  • Godio RP, Fouces R, Martin JF (2007) A squalene epoxidase is involved in biosynthesis of both the antitumor compound Clavaric acid and Sterols in the Basidiomycete H. sublateritium. Chem Biol 14:1334–1346

    Article  CAS  PubMed  Google Scholar 

  • Gulijimila M, Fan HJ, Liu ZH, Wang N, Dou K, Huang Y, Wang ZY (2012) Cloning and sequence analysis of small molecular hydrophobin protein hyb2 gene from Trichoderma asperellum T4. Chin Agric Sci Bull 28:85–91

    Google Scholar 

  • Hanson LE, Howell CR (2004) Elicitors of plant defence responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Botella L, Keck E, Jiménez JA, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C (2011) The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J Plant Physiol 168:1295–1302

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Belén Rubio M, Cardoza RE, Nicolás C, Monte E, Gutiérrez S (2013) The contribution of Trichoderma to balancing the costs of plant growth and defence. Int Microbiol 16:69–80

    CAS  PubMed  Google Scholar 

  • Hidangmayum A, Dwivedi P (2018) Plant responses to Trichoderma spp. and their tolerance to abiotic stresses: a review. J Pharma Phytochem 7:758–766

    CAS  Google Scholar 

  • Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252

    Article  CAS  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Kashyap PL, Kumar S, Srivastava AK (2017) Nano diagnostics for plant pathogens. Environ Chem Lett 15:7–13

    Article  CAS  Google Scholar 

  • Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V et al (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy NO, Meller HY, Haile ZM, Elad Y, David E, Jurkevitch E, Katan J (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374

    Article  CAS  Google Scholar 

  • Li MF, Li GH, Ke-Qin Zhang KQ (2019) Non-volatile metabolites from Trichoderma spp. Metabolites 9:58

    Article  CAS  PubMed Central  Google Scholar 

  • Lopez Mondejar R, Ros M, Pascual JA (2011) Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol Control 56:59–66

    Article  CAS  Google Scholar 

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123

    Article  Google Scholar 

  • Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defence responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126

    Article  CAS  PubMed  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutiérrez S (2012) Involvement of Trichoderma trichothecenes in the biocontrol activity and induction of plant defence-related genes. Appl Environ Microbiol 78:4856–4868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Collado IG, Hermosa R, Monte E, Gutiérrez S (2013) Relevance of trichothecenes in fungal physiology: disruption of tri5 in Trichoderma arundinaceum. Fungal Genet Biol 53:22–33

    Article  CAS  PubMed  Google Scholar 

  • Marra R, Ambosino P, Carbone V, Vinale F, Woo SL (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens using a proteome approach. Curr Genet 50:307–321

    Article  CAS  PubMed  Google Scholar 

  • Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth promoting fungus, Trichoderma koningii suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microb Environ 26:128–134

    Article  Google Scholar 

  • Matarasso N, Schuster S, Avni A (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell 17:1205–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Meller HY, Haile MZ, David D, Borenstein M, Shulchani R, Elad Y (2013) Induced systemic resistance against grey mould in tomato (Solanum lycopersicum) by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157

    Google Scholar 

  • Mendoza-Mendoza A, Pozo MJ, Grzegorski D, Martinez P, Garcia JM, Olmedo-Monfil V, Cortes C, Kenerly C, Herrera-Estrella A (2003) Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen- activated protein kinase. Proc Natl Acad Sci U S A 100:15965–15970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza-Mendoza A, Rosales-Saavedra T, Cortes C (2007) The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology 153:2137–2147

    Article  CAS  PubMed  Google Scholar 

  • Migheli Q, Gonzalez-Candelas L, Dealessi L, Camponogara A, Ramon-Vidal D (1998) Transformants of Trichoderma longibrachiatum overexpressing the beta-1,4-endoglucanase gene egl1 show enhanced biocontrol of Pythium ultimum on cucumber. Phytopathology 8:673–677

    Article  Google Scholar 

  • Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2003) TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee PK, Latha J, Hadar R, Horwitz BA (2004) Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 70:542–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee M, Mukherjee PK, Kale SP (2007) cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Horwitz BA, Kenerley CM (2012) Secondary metabolism in Trichoderma: a genomic perspective. Microbiology 158:35–45

    Article  CAS  PubMed  Google Scholar 

  • Nemcovic M, Farkas V (1998) Stimulation of conidiation by derivatives of cAMP in Trichoderma viride. Folia Microbiol 43:399–402

    Article  CAS  Google Scholar 

  • Nielsen KF, Gräfenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    Article  CAS  PubMed  Google Scholar 

  • Nogueira KMV, Costa MDN, de Paula RG, Mendonça-Natividade FC, Ricci-Azevedo R, Nascimento SRN (2015) Evidence of cAMP involvement in cellobiohydrolase expression and secretion by Trichoderma reesei in presence of the inducer sophorose. BMC Microbiol 15:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perazzolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defence without costs for grapevine. Biol Control 58:74–82

    Article  Google Scholar 

  • Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petutschnig EK, Jones AME, Serazetdinova L, Lipka U, Lipka V (2010) The lysin motif receptor-like kinase (LysM-RLK) CERK1 is a major chitin-binding protein in Arabidopsis thaliana and subject to chitin-induced phosphorylation. J Biol Chem 285:28902–28911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piel J, Atzorn R, Gäbler R, Kühnemann F, Boland W (1997) Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. FEBS Lett 416:143–148

    Article  CAS  PubMed  Google Scholar 

  • Pineda A, Zheng SJ, Van Loon JJA, Pieterse CMJ, Dicke M (2010) Helping plants to deal with insects: the beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Baek JM, García JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41:336–348

    Article  CAS  PubMed  Google Scholar 

  • Reithner B, Brunner K, Schuhmacher R, Peissl I, Seidl V, Krska R, Zeilinger S (2005) The G protein alpha subunit Tga1 of Trichoderma atroviride is involved in chitinase formation and differential production of antifungal metabolites. Fungal Genet Biol 42:749–760

    Article  CAS  PubMed  Google Scholar 

  • Reithner B, Schuhmacher R, Stoppacher N, Pucher M, Brunner K, Zeilinger S (2007) Signaling via the Trichoderma atroviride mitogen-activated protein kinase Tmk1 differentially affects mycoparasitism and plant protection. Fungal Genet Biol 44:1123–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha-Ramirez V, Omero C, Chet I, Horwitz BA, Herrera-Estrella A (2002) Trichoderma atroviride G-protein alpha-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene- inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosado IV, Rey M, Codón AC, Govantes J, Moreno-Mateos MA, Benítez T (2007) QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44:950–964

    Article  CAS  PubMed  Google Scholar 

  • Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Rubio MB, Hermosa R, Reino JL, Collado IG, Monte E (2009) Thctf1 transcription factor of Trichoderma harzianum is involved in 6-pentyl80 2H-pyran-2-one production and antifungal activity. Fungal Genet Biol 46:17–27

    Article  CAS  PubMed  Google Scholar 

  • Ruiz N, Wielgosz-Collin G, Poirier L, Grovel O, Petit KE, Mohamed-Benkada M, Pont TR, Bissett J, Vérité P, Barnathan G, Pouchus YF (2007) New Trichobrachins,11-residue peptaibols from a marine strain of Trichoderma longibrachiatum. Peptides 28:1351–1358

    Article  CAS  PubMed  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Harrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonate and salicylate pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Salas-Marina MA, Isordia-Jasso M, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015) The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front Plant Sci 23:77

    Google Scholar 

  • Samolski I, Rincón A, Pinzón LM (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138

    Article  CAS  PubMed  Google Scholar 

  • Seaman A (2003) Efficacy of OMRI-approved products for tomato foliar disease control. NY State Integr Pest Manag Progr Publ 129:164–167

    Google Scholar 

  • Segarra G, Casanova E, Bellido D (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Seidl V, Schmoll M, Scherm B, Balmas V, Seiboth B, Migheli Q, Kubicek CP (2006) Antagonism of Pythium blight of zucchini by Hypocrea jecorina does not require cellulase gene expression but is improved by carbon catabolite derepression. FEMS Microbiol Lett 257:145–151

    Article  CAS  PubMed  Google Scholar 

  • Sesták S, Farkas V (1993) Metabolic regulation of endoglucanase synthesis in Trichoderma reesei: participation of cyclic AMP and glucose-6-phosphate. Can J Microbiol 39:342–347

    Article  PubMed  Google Scholar 

  • Sharma P, Kumar PV, Ramesh R, Saravanan K, Deep S, Shrama M, Mahesh S, Singh D (2011) Biocontrol genes from Trichoderma species: a review. Afr J Biotech 10(86):19898–19907

    CAS  Google Scholar 

  • Shoresh M, Harman GE (2008a) The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal Behav 3:737–739

    Article  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE (2008b) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Simarmata T, Hersanti, Turmuktini T, Fitriatin BN, Setiawati MR, Purwanto (2015) Application of bioameliorant and biofertilizers to increase the soil health and rice productivity. Hayati J Biosci 23:181–184

    Article  Google Scholar 

  • Singh HB (2006) Trichoderma: a boon for biopesticide industry. J Mycol Plant Pathol 36:373–384

    Google Scholar 

  • Singh HB, Singh BN, Singh SP, Sarma BK (2012) Exploring different avenues of Trichoderma as a potent biofungicidal and plant growth promoting candidate – an overview. In: Bagyanarayana G, Gour HN, Manoharachary C, Kunwar IK (eds) Review of plant pathology, vol 5. Scientific Publishers, Jodhpur, pp 315–426

    Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. J Crop Hortic Sci 31:281–291

    Article  Google Scholar 

  • Tijerino A, Cardoza RE, Moraga J, Malmierca MG, Vicente F, Aleu J, Collado IG, Gutiérrez S, Monte E, Hermosa R (2011) Overexpression of the trichodiene synthase gene tri5 increases trichodermin production and antimicrobial activity in Trichoderma brevicompactum. Fungal Genet Biol 48:285–296

    Article  CAS  PubMed  Google Scholar 

  • Tisch D, Kubicek CP, Schmoll M (2011) New insights into the mechanism of light modulated signaling by heterotrimeric G-proteins: ENVOY acts on gna1 and gna3 and adjusts cAMP levels in Trichoderma reesei (Hypocrea jecorina). Fungal Genet Biol 48:631–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354

    Article  CAS  PubMed  Google Scholar 

  • Van Wees SCM, van der Ent S, Pieterse CMJ (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    Article  PubMed  CAS  Google Scholar 

  • Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86

    Article  CAS  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008b) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258

    Article  CAS  PubMed  Google Scholar 

  • Viterbo A, Harel M, Horwitz BA, Chet I, Mukherjee PK (2005) Trichoderma mitogen activated protein kinase signalling is involved in induction of plant systemic resistance. Appl Environ Microbiol 71:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746

    Article  CAS  PubMed  Google Scholar 

  • Vizcaíno JA, Cardoza RE, Hauser M, Hermosa R, Rey M, Llobell A, Becker JM, Gutiérrez S, Monte E (2006) ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 43:234–246

    Article  PubMed  CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J, Chen J (2017) Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS One 12(6):e0179957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasmeen R, Siddiqui ZS (2017) Physiological responses of crop plants against Trichoderma harzianum in saline environment. Acta Bot Croat 76:154–162

    Article  CAS  Google Scholar 

  • Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zeilinger S, Omann M (2007) Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Regul Syst Bio 8:227–234

    Google Scholar 

  • Zeilinger S, Gruber S, Bansal R, Mukherjee PK (2016) Secondary metabolism in Trichoderma-chemistry meets genomics. Fungal Biol Rev 30:74–90

    Article  Google Scholar 

  • Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, B.N., Chakraborty, U., Sunar, K. (2020). Induced Immunity Developed by Trichoderma Species in Plants. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_7

Download citation

Publish with us

Policies and ethics