Advertisement

Trichoderma pp 111-123 | Cite as

Systemically Induced Resistance Against Maize Diseases by Trichoderma spp.

  • Jie ChenEmail author
  • Murugappan Vallikkannu
  • Valliappan Karuppiah
Chapter
  • 58 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

Maize (Zea mays) is a vital crop for human food, animal feed, and biofuel generation. But production is altogether diminished because of several pathogens. Trichoderma species incorporates numerous imperative in farming and is used as biological control agents (BCAs). A group of elicitors produced by the Trichoderma hyphae are able to induce distinctive sorts of defensive signals inside the plants through activation of salicylic acid (SA), jasmonic acid (JA), brassinolide (BR), reactive oxygen species (ROS), and defense enzymes. Hyd1 and cellulase are the elicitors obtained from Trichoderma harzianum that were found to recognize root target proteins. Activation of these genes induces the plant to produce compounds associated with the reduction of pathogens invasion and improve the biochemical activities for the plant growth and development. The basic target of this chapter is to display the efficacy of Trichoderma on the systemically induced resistance against maize diseases.

Keywords

Trichoderma Plant pathogens Maize Induced resistance Secondary metabolites MAMP 

Notes

Acknowledgment

The review covers research achievements supported by the grant from the National Key Projects (2017YFD0200403; 2017YFD0200901), National Nature Science Foundation (31872015, 31672072), and Chinese Agriculture Research System CARS-02.

References

  1. Agostini RB, Postigo A, Rius SP, Rech GE, Campos-Bermudez VA, Vargas WA (2018) Long-lasting primed state in maize plants: salicylic acid and steroid signaling pathways as key players in the early activation of immune responses in silks. Mol Plant Microbe Interact 32:95–106PubMedCrossRefGoogle Scholar
  2. Alexandru M, Lazăr D, Ene M, Şesan TE (2013) Influence of some Trichoderma species on photosynthesis intensity and pigments in tomatoes. Rom Biotech Lett 18:8499–8510Google Scholar
  3. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedCrossRefGoogle Scholar
  4. Bisen K, Keswani C, Patel JS, Sarma BK, Singh HB (2016) Trichoderma spp.: efficient inducers of systemic resistance in plants. In: Microbial-mediated induced systemic resistance in plants. Springer, Singapore, pp 185–195CrossRefGoogle Scholar
  5. Bisht S, Kumar P, Srinivasanraghavan A, Purohit J (2013) In vitro management of Curvularia leaf spot of maize using botanicals, essential oils, and bio-control agents. Bioscan Suppl Med Plants 8:731–733Google Scholar
  6. Błaszczyk L, Basińska-Barczak A, Ćwiek-Kupczyńska H, Gromadzka K, Popiel D, Stępień Ł (2017) Suppressive Effect of Trichoderma spp. on toxigenic Fusarium species. J Appl Microbiol 66:85–100Google Scholar
  7. Chen J, Harman GE, Comis A, Cheng GW (2005) Proteins related to the biocontrol of Pythium damping-off in maize with Trichoderma harzianum Rifai. J Integr Plant Biol 47:988–997CrossRefGoogle Scholar
  8. Chen LL, Yang X, Raza W, Li J, Liu Y, Qiu M, Zhang F, Shen Q (2011) Trichoderma harzianum SQR-T037 rapidly degrades allelochemicals in rhizospheres of continuously cropped cucumbers. Appl Microbiol Biotechnol 89:1653–1663PubMedCrossRefGoogle Scholar
  9. Chen J, Dou K, Gao Y, Li Y (2014) Mechanism and application of Trichoderma spp in biological control of corn diseases. Mycosystema 33:1154–1167Google Scholar
  10. Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Ind J Microbiol 47:289–297CrossRefGoogle Scholar
  11. Contreras-Cornejo H, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics, and gene expression. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications. CABI International, Wallingford, pp 175–196Google Scholar
  12. Contreras-Cornejo HA, López-Bucio JS, Méndez-Bravo A, Macías-Rodríguez L, Ramos-Vega M, Guevara-García ÁA, López-Bucio J (2015) Mitogen-activated protein kinase 6 and ethylene and auxin signaling pathways are involved in Arabidopsis root-system architecture alterations by Trichoderma atroviride. Mol Plant Microbe Interact 28:701–710PubMedCrossRefGoogle Scholar
  13. Contreras-Cornejo HA, Del-Val E, Macías-Rodríguez L, Alarcón A, González-Esquivel CE, Larsen J (2018) Trichoderma atroviride, a maize root associated fungus, increases the parasitism rate of the fall armyworm Spodoptera frugiperda by its natural enemy Campoletis sonorensis. Soil Biol Biochem 122:196–202CrossRefGoogle Scholar
  14. Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889PubMedPubMedCentralCrossRefGoogle Scholar
  15. El-Hasan A, Schoene J, Hoeglinger B, Walker F, Voegele RT (2018) Assessment of the antifungal activity of selected biocontrol agents and their secondary metabolites against Fusarium graminearum. Eur J Plant Pathol 150:91–103CrossRefGoogle Scholar
  16. Fan L, Fu K, Yu C, Li Y, Li Y, Chen J (2015) Thc6 protein, isolated from Trichoderma harzianum, can induce maize defense response against Curvularia lunata. J Basic Microbiol 55:591–600PubMedCrossRefGoogle Scholar
  17. Harman GE (2011) Multifunctional fungal symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649PubMedPubMedCentralCrossRefGoogle Scholar
  18. Harman GE, Petzoldt R, Comis A, Chen J (2004) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153PubMedPubMedCentralCrossRefGoogle Scholar
  19. He A, Liu J, Wang XH, Zhang Q, Song W, Chen J (2018) Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize. J Integr Agric 17:60345–60347Google Scholar
  20. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedPubMedCentralCrossRefGoogle Scholar
  21. Hua L-F, Zhi Y-H, Tao W-Y, Xiong-Mian P (2006) Research progress for maize Curvularia leaf spot disease. J Maize Sci 12:97–101Google Scholar
  22. Huang J, Zheng L, Hsiang T (2004) First report of leaf spot caused by Curvularia verruculosa on Cynodon sp. In Hubei, China. Plant Pathol 54(2):253CrossRefGoogle Scholar
  23. Huang CJ, Yang KH, Liu YH, Lin YJ, Chen CY (2010) Suppression of southern corn leaf blight by a plant growth-promoting rhizobacterium Bacillus cereus C1L. Ann Appl Biol 157:45–53CrossRefGoogle Scholar
  24. Jirak-Peterson JC, Esker PD (2011) Tillage, crop rotation, and hybrid effects on residue and corn anthracnose occurrence in Wisconsin. Plant Dis 95:601–610PubMedCrossRefGoogle Scholar
  25. Jones JDG, Dangl JL (2006) The plant immune system. Nature 144:323–329CrossRefGoogle Scholar
  26. Kinkema M, Fan W, Dong X (2000) Nuclear localization of NPR1 is required for activation of PR gene expression. Plant Cell 12:2339–2350PubMedPubMedCentralCrossRefGoogle Scholar
  27. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:40CrossRefGoogle Scholar
  28. Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063PubMedPubMedCentralCrossRefGoogle Scholar
  29. Martinez-Medina A, Pozo MJ, Cammue BP, Vos CM (2016) Belowground defence strategies in plants: the plant–Trichoderma dialogue below ground defence strategies in plants. Springer, New York, NY, pp 301–327CrossRefGoogle Scholar
  30. Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees S (2017) Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377PubMedPubMedCentralCrossRefGoogle Scholar
  31. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031PubMedPubMedCentralCrossRefGoogle Scholar
  32. Müller A, Faubert P, Hagen M, zu Castell W, Polle A, Schnitzler J-P, Rosenkranz M (2013) Volatile profiles of fungi–chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33PubMedCrossRefGoogle Scholar
  33. Patiño B, Vázquez C, Manning JM, Roncero MIG, Córdoba-Cañero D, Di Pietro A, Martínez-del-Pozo Á (2018) Characterization of a novel cysteine-rich antifungal protein from Fusarium graminearum with activity against maize fungal pathogens. Int J Food Microbiol 283:45–51PubMedCrossRefGoogle Scholar
  34. Rawat L, Singh Y, Shukla N, Kumar J (2013) Salinity tolerant Trichoderma harzianum reinforces NaCl tolerance and reduces population dynamics of Fusarium oxysporum f. sp ciceri in chickpea (Cicer arietinum L) under salt stress conditions. Archiv Phytopathol Plant Protect 46:1442–1467CrossRefGoogle Scholar
  35. Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà T, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant Microbe Interact 22:291–301PubMedCrossRefGoogle Scholar
  36. Saba H, Vibhash D, Manisha M, Prashant K, Farhan H, Tauseef A (2012) Trichoderma–a promising plant growth stimulator and biocontrol agent. Mycosphere 3:524–531CrossRefGoogle Scholar
  37. Saldajeno MGB, Naznin HA, Elsharkawy MM, Shimizu M, Hyakumachi M (2014) Enhanced resistance of plants to disease using Trichoderma spp. In: Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 477–493CrossRefGoogle Scholar
  38. Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138PubMedPubMedCentralCrossRefGoogle Scholar
  39. Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J (2016) Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6:35543PubMedPubMedCentralCrossRefGoogle Scholar
  40. Saravanakumar K, Li Y, Yu C, Wang Q-q, Wang M, Sun J, Gao J-x, Chen J (2017) Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci Rep 7:1771PubMedPubMedCentralCrossRefGoogle Scholar
  41. Saravanakumar K, Dou K, Lu Z, Wang X, Li Y, Chen J (2018a) Enhanced biocontrol activity of cellulase from Trichoderma harzianum against Fusarium graminearum through activation of defense-related genes in maize. Physiol Mol Plant Pathol 103:130–136CrossRefGoogle Scholar
  42. Saravanakumar K, Wang S, Dou K, Lu Z, Chen J (2018b) Yeast two-hybrid and label-free proteomics based screening of maize root receptor to cellulase of Trichoderma harzianum. Physiol Mol Plant Pathol 104:86–94CrossRefGoogle Scholar
  43. Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol 87:787–799PubMedPubMedCentralCrossRefGoogle Scholar
  44. Shan L, Hafiz AH, Jun Z, Dandan Z, Daniel PJ, Xiaofeng D, Wei G (2019) A loop-mediated isothermal amplification (LAMP) assay for the rapid detection of toxigenic Fusarium temperatum in maize stalks and kernels. Int J Food Microbiol 291:72–78PubMedCrossRefGoogle Scholar
  45. Shoresh M, Harman GE (2008) Genome-wide identification, expression and chromosomal location of the genes encoding chitinolytic enzymes in Zea mays. Mol Gen Genet 280:173CrossRefGoogle Scholar
  46. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedPubMedCentralCrossRefGoogle Scholar
  47. Sun HQ, He ZD, Gao YF, Liu R (2009) The mechanisms of Trichoderma spp in inhibition to maize foliar pathogens. Jiangsu Agric Sci 3:105–107. (in Chinese)Google Scholar
  48. Tian Y, Tan Y, Liu N, Yan Z, Liao Y, Chen J, De Saeger S, Yang H, Zhang Q, Wu A (2016) Detoxification of deoxynivalenol via glycosylation represents novel insights on antagonistic activities of Trichoderma when confronted with Fusarium graminearum. Toxins 8:335PubMedCentralCrossRefGoogle Scholar
  49. Troian RF, Steindorff AS, Ramada MHS, Arruda W, Ulhoa CJ (2014) Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Biotechnol Lett 36:2095–2101PubMedCrossRefGoogle Scholar
  50. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354PubMedPubMedCentralCrossRefGoogle Scholar
  51. Vallad GE, Goodman RM (2004) Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci 44:1920–1934CrossRefGoogle Scholar
  52. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808PubMedPubMedCentralCrossRefGoogle Scholar
  53. Velázquez-Robledo R, Contreras-Cornejo H, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant Microbe Interact 24:1459–1471PubMedPubMedCentralCrossRefGoogle Scholar
  54. Viterbo ADA, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Physiol Mol Plant Pathol 7:249–258CrossRefGoogle Scholar
  55. Woo S, Scala F, Ruocco M, Lorito M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185PubMedPubMedCentralCrossRefGoogle Scholar
  56. Xing F, Liu X, Wang L, Selvaraj JN, Jin N, Wang Y, Zhao Y, Liu Y (2017) Distribution and variation of fungi and major mycotoxins in pre-and post-nature drying maize in North China Plain. Food Control 80:244–251CrossRefGoogle Scholar
  57. Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seed-borne diseases of rice. Pest Manag Sci 68:60–66PubMedPubMedCentralCrossRefGoogle Scholar
  58. Yu C, Fan L, Wu Q, Fu K, Gao S, Wang M, Gao J, Li Y, Chen J (2014) Biological role of Trichoderma harzianum-derived Platelet-Activating Factor Acetylhydrolase (PAF-AH) on stress response and antagonism. PLoS One 9:e100367PubMedPubMedCentralCrossRefGoogle Scholar
  59. Yu C, Dou K, Wang S, Wu Q, Ni M, Zhang T, Lu Z, Tang J, Chen J (2019) Elicitor hydrophobin Hyd1 interacts with Ubiquilin1-like to induce maize systemic resistance. J Integr Plant Biol.  https://doi.org/10.1111/jipb.12796
  60. Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jie Chen
    • 1
    • 2
    • 3
    Email author
  • Murugappan Vallikkannu
    • 1
    • 2
    • 3
  • Valliappan Karuppiah
    • 1
    • 2
    • 3
  1. 1.School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiP. R. China
  2. 2.Key Laboratory of Urban Agriculture (South) Ministry of AgricultureShanghai Jiao Tong UniversityShanghaiP. R. China
  3. 3.State Key Laboratory of Microbial MetabolismShanghai Jiao Tong UniversityShanghaiP. R. China

Personalised recommendations