Advertisement

Trichoderma pp 81-110 | Cite as

Plant Immunity, Priming, and Systemic Resistance as Mechanisms for Trichoderma spp. Biocontrol

  • Rupali Gupta
  • Maya BarEmail author
Chapter
  • 75 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

During plant–pathogen interactions, plants mount sophisticated defenses to ward off their enemies. Plant defenses can be triggered by biocontrol agents. In recent years, various biocontrol agents have been defined as systemic resistance inducers of plant immunity. Trichoderma spp. are opportunistic plant colonizers that trigger host-induced systemic resistance (ISR), typically eliciting rapid defense responses that include massive transcriptional reprogramming. Root and leaf colonization by Trichoderma can prime plant defense, enabling robust plant responses to subsequent pathogen challenges. The onset of host immune responses can also trigger systemic acquired resistance (SAR) in tissues distal to the infection site. Trichoderma spp. are potent inducers of plant ISR. Systemic priming leading to rapid defense responses upon pathogen attack is common to both SAR and ISR. In this chapter, we will outline the current knowledge of plant immunity, emphasizing mechanisms underlying induced systemic resistance triggered by Trichoderma.

Keywords

Trichoderma Biocontrol Plant immunity Systemic resistance 

Notes

Acknowledgments

Research in the Bar group is supported by grants 20-02-0075 and 20-02-0113 from the Israeli Ministry of Agriculture and Rural Development. R. G. is supported by the Indo-China ARO Postdoctoral Fellowship Program. The authors thank Prof. Yigal Elad, Dalia Rav-David, and the members of the Elad and Bar groups for helpful discussions and continuous support (Publication No. 593/19 of the ARO).

References

  1. Abeysinghe S (2009) Systemic resistance induced by Trichoderma harzianum RU01 against Uromyces appendiculatus on Phaseolus vulgaris. J. Natl Sci Found Sri Lanka 37:203–207CrossRefGoogle Scholar
  2. Ahmed AS, Ezziyyani M, Sánchez CP, Candela ME (2003) Effect of chitin on biological control activity of Bacillus spp. and Trichoderma harzianum against root rot disease in pepper (Capsicum annuum) plants. Eur J Plant Pathol 109:633–637CrossRefGoogle Scholar
  3. Aidemark M, Tjellström H, Sandelius AS, Stålbrand H, Andreasson E, Rasmusson AG, Widell S (2010) Trichoderma viride cellulase induces resistance to the antibiotic pore-forming peptide alamethicin associated with changes in the plasma membrane lipid composition of tobacco BY-2 cells. BMC Plant Biol 10:274PubMedPubMedCentralCrossRefGoogle Scholar
  4. Alfano G, Ivey ML, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitink HAJ (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437PubMedCrossRefGoogle Scholar
  5. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CM, Bakker PA (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23CrossRefGoogle Scholar
  6. Alkooranee JT, Yin Y, Aledan TR, Jiang Y, Lu G, Wu J, Li M (2015) Systemic resistance to powdery mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12. PLoS One 10:e0142177PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alkooranee JT, Aledan TR, Ali AK, Lu G, Zhang X, Wu J, Fu C, Li M (2017) Detecting the hormonal pathways in oilseed rape behind induced systemic resistance by Trichoderma harzianum TH12 to Sclerotinia sclerotiorum. PLoS One 12:e0168850PubMedPubMedCentralCrossRefGoogle Scholar
  8. Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant–microbe interactions. Curr Opin Biotechnol 20:642–650PubMedCrossRefGoogle Scholar
  9. Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM, Melnick RL, Bailey BA (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interac 24:336–351CrossRefGoogle Scholar
  10. Baiyee B, Ito SI, Sunpapao A (2019) Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol Mol Plant Pathol 106:96–101CrossRefGoogle Scholar
  11. Baker SE, Perrone G, Richardson NM, Gallo A, Kubicek CP (2012) Phylogenomic analysis of polyketide synthase-encoding genes in Trichoderma. Microbiology 158:147–154PubMedCrossRefGoogle Scholar
  12. Bar M, Sharfman M, Schuster S, Avni A (2009) The coiled-coil domain of EHD2 mediates inhibition of LeEix2 endocytosis and signaling. PLoS One 4:e7973PubMedPubMedCentralCrossRefGoogle Scholar
  13. Benítez T, Rincón AM, Limón MC, Codon AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260PubMedGoogle Scholar
  14. Bigirimana J, De Meyer G, Poppe J, Elad Y, Höfte M (1997) Induction of systemic resistance on bean (Phaseolus Vulgaris) by Trichoderma harzianum. Mededelingen Van De Faculteit Landbouwkundige En Toegepaste Biologische Wetenschappen, Universiteit Gent 62:1001–1007Google Scholar
  15. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158:139–146PubMedCrossRefGoogle Scholar
  17. Brunner K, Zeilinger S, Ciliento R, Woo SL, Lorito M, Kubicek CP, Mach RL (2005) Improvement of the fungal biocontrol agent Trichoderma atroviride to enhance both antagonism and induction of plant systemic disease resistance. Appl Environ Microbiol 71:3959–3965PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113PubMedCrossRefGoogle Scholar
  19. Carrero-Carrón I, Trapero-Casas JL, Olivares-García C, Monte E, Hermosa R, Jiménez-Díaz RM (2016) Trichoderma asperellum is effective for biocontrol of Verticillium wilt in olive caused by the defoliating pathotype of Verticillium dahliae. Crop Prot 88:45–52CrossRefGoogle Scholar
  20. Chen J, Harman GE, Comis A, Cheng GW (2005) Proteins related to the biocontrol of pythium damping-off in maize with Trichoderma harzianum Rifai. J Integr Plant Biol 47:988–997CrossRefGoogle Scholar
  21. Chen SC, Zhao HJ, Wang ZH, Zheng CX, Zhao PY, Guan ZH, Qin HY, Liu AR, Lin XM, Ahammed GJ (2017) Trichoderma harzianum-induced resistance against Fusarium oxysporum involves regulation of nuclear DNA content, cell viability and cell cycle-related genes expression in cucumber roots. Eur J Plant Pathol 147:43–53CrossRefGoogle Scholar
  22. Cheng CH, Shen BN, Shang QW, Liu LYD, Peng KC, Chen YH, Chen FF, Hu SF, Wang YT, Wang HC, Wu HY (2018) Gene-to-gene network analysis of the mediation of plant innate immunity by the eliciting plant response-like 1 (Epl1) Elicitor of Trichoderma formosa. Mol Plant-Microbe Interac 31:683–691CrossRefGoogle Scholar
  23. Conrath U, Beckers GJ, Flors V, García-Agustín P, Jakab G, Mauch F, Newman MA, Pieterse CM, Poinssot B, Pozo MJ, Pugin A (2006) Priming: getting ready for battle. Mol Plant-Microbe Interac 19:1062–1071CrossRefGoogle Scholar
  24. Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119PubMedCrossRefGoogle Scholar
  25. Contreras-Cornejo HA, Macías-Rodríguez L, Cortés-Penagos C, López-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Plant Physiol 149:1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  26. Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J (2011) Trichoderma-induced plant immunity likely involves both hormonal-and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563PubMedPubMedCentralCrossRefGoogle Scholar
  27. Contreras-Cornejo HA, Ortiz-Castro R, López-Bucio J (2013) Promotion of plant growth and the induction of systemic defence by Trichoderma: physiology, genetics and gene expression. In: Trichoderma : biology and applications. CABI, Wallingford, pp 173–194CrossRefGoogle Scholar
  28. Contreras-Cornejo HA, Macías-Rodríguez L, Alfaro-Cuevas R, López-Bucio J (2014a) Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na+ elimination through root exudates. Mol Plant-Microbe Interac 27:503–514CrossRefGoogle Scholar
  29. Contreras-Cornejo HA, Macías-Rodríguez L, Herrera-Estrella A, López-Bucio J (2014b) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil 379:261–274CrossRefGoogle Scholar
  30. Costa A, Navazio L, Szabo I (2018) The contribution of organelles to plant intracellular calcium signalling. J Exp Bot 69:4175–4193CrossRefGoogle Scholar
  31. Couto D, Zipfel C (2016) Regulation of pattern recognition receptor signalling in plants. Nat Rev Immunol 16:537PubMedCrossRefGoogle Scholar
  32. Crutcher FK, Moran-Diez ME, Ding S, Liu J, Horwitz BA, Mukherjee PK, Kenerley CM (2015) A paralog of the proteinaceous elicitor SM1 is involved in colonization of maize roots by Trichoderma virens. Fungal Biol 119:476–486PubMedCrossRefGoogle Scholar
  33. De Jonge R, Van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, Van Der Krol S, Shibuya N, Joosten MH, Thomma BP (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955PubMedCrossRefGoogle Scholar
  34. De Meyer G, Bigirimana J, Elad Y, Höfte M (1998) Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286CrossRefGoogle Scholar
  35. De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D’Agostino N, Tucci M (2019) Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res 6:5PubMedPubMedCentralCrossRefGoogle Scholar
  36. Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H (2006) Trichoderma brevicompactum complex: rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). J Agric Chem 54:7047–7061CrossRefGoogle Scholar
  37. Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853PubMedCrossRefGoogle Scholar
  38. Djonović S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889PubMedPubMedCentralCrossRefGoogle Scholar
  39. Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Rev Genet 11:539PubMedCrossRefGoogle Scholar
  40. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759PubMedCrossRefGoogle Scholar
  41. Dunlop RW, Simon A, Sivasithamparam K, Ghisalberti EL (1989) An antibiotic from Trichoderma koningii active against soil borne plant pathogens. J Nat Prod 52:67–74CrossRefGoogle Scholar
  42. Elad Y (2000) Trichoderma harzianum T39 preparation for biocontrol of plant diseases-control of Botrytis cinerea, Sclerotinia sclerotiorum and Cladosporium fulvum. Biocontrol Sci Technol 10:499–507CrossRefGoogle Scholar
  43. Elad Y, Kirshner B (1993) Survival in the phylloplane of an introduced biocontrol agent (Trichoderma harzianum) and populations of the plant pathogen Botrytis cinerea as modified by abiotic conditions. Phytoparasitica 21:303–313CrossRefGoogle Scholar
  44. Elad Y, Kirshner B, Yehuda N, Sztjenberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. BioControl 43:241–251CrossRefGoogle Scholar
  45. El-Hasan A, Buchenauer H (2009) Actions of 6-Pentyl-alpha-pyrone in controlling seedling blight incited by Fusarium moniliforme and inducing defence responses in maize. J Phytopathol 157:697–707CrossRefGoogle Scholar
  46. Elsharkawy MM, Shimizu M, Takahashi H, Ozaki K, Hyakumachi M (2013) Induction of systemic resistance against Cucumber mosaic virus in Arabidopsis thaliana by Trichoderma asperellum SKT-1. Plant Pathol J 29:193–200PubMedPubMedCentralCrossRefGoogle Scholar
  47. Engelberth J, Koch T, Schüler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377PubMedPubMedCentralCrossRefGoogle Scholar
  48. Evidente A, Cabras A, Maddau L, Serra S, Andolfi A, Motta A (2003) Viridepyronone, a new antifungal 6-substituted 2 h-pyran-2-one produced by Trichoderma viride. J Agric Food Chem 51:6957–6960PubMedCrossRefGoogle Scholar
  49. Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME (2007) Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J Phytopathol 155:342–349CrossRefGoogle Scholar
  50. Faize M, Malnoy M, Dupuis F, Chevalier M, Parisi L, Chevreau E (2003) Chitinases of Trichoderma atroviride induce scab resistance and some metabolic changes in two cultivars of apple. Phytopathology 93:1496–1504PubMedCrossRefGoogle Scholar
  51. Fontenelle ADB, Guzzo SD, Lucon CMM, Harakava R (2011) Growth promotion and induction of resistance in tomato plant against Xanthomonas euvesicatoria and Alternaria solani by Trichoderma spp. Crop Prot 30:1492–1500CrossRefGoogle Scholar
  52. Furman-Matarasso N, Cohen E, Du Q, Chejanovsky N, Hanania U, Avni A (1999) A point mutation in the ethylene-inducing xylanase elicitor inhibits the β-1-4-endoxylanase activity but not the elicitation activity. Plant Physiol 121:345–352PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230CrossRefGoogle Scholar
  55. Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A, Macías-Rodríguez L, Ruiz-Herrera LF, López-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytol 209:1496–1512PubMedCrossRefGoogle Scholar
  56. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  57. Gomes EV, Ulhoa CJ, Cardoza RE, Silva RN, Gutiérrez S (2017) Involvement of Trichoderma harzianum Epl-1 protein in the regulation of botrytis virulence-and tomato defense-related genes. Front Plant Sci 8:880PubMedPubMedCentralCrossRefGoogle Scholar
  58. Gupta R, Singh A, Gupta MM, Pandey R (2016) Cumulative role of bioinoculants on growth, antioxidant potential and artemisinin content in Artemisia annua L. under organic field conditions. World J Microbiol Biotechnol 32:167PubMedCrossRefGoogle Scholar
  59. Gupta R, Singh A, Kanaujia R, Kushwaha S, Pandey R (2018) Trichoderma harzianum ThU and its metabolites underscore alteration in essential oils of Ocimum basilicum and Ocimum sanctum. Proc Natl Acad Sci Ind Sec B Biol Sci 88:219–227CrossRefGoogle Scholar
  60. Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18:16PubMedPubMedCentralCrossRefGoogle Scholar
  61. Guzmán-Guzmán P, Porras-Troncoso MD, Olmedo-Monfil V, Herrera-Estrella A (2018) Trichoderma species: versatile plant symbionts. Phytopathology 109(1):6–16PubMedCrossRefGoogle Scholar
  62. Hanania U, Furman-Matarasso N, Ron M, Avni A (1999) Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J 19:533–541PubMedCrossRefGoogle Scholar
  63. Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176PubMedCrossRefGoogle Scholar
  64. Harman GE (2006) Overview of mechanisms and uses of Trichoderma spp. Phytopathology 96:190–194PubMedCrossRefGoogle Scholar
  65. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004a) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43PubMedCrossRefGoogle Scholar
  66. Harman GE, Petzoldt R, Comis A, Chen J (2004b) Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147–153PubMedCrossRefGoogle Scholar
  67. Harman GE, Herrera-Estrella AH, Horwitz BA, Lorito M (2012) Special issue: Trichoderma-from basic biology to biotechnology. Microbiol Read 158:1CrossRefGoogle Scholar
  68. Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25PubMedCrossRefGoogle Scholar
  69. Hoitink HAJ, Madden LV, Dorrance AE (2006) Systemic resistance induced by Trichoderma spp.: interactions between the host, the pathogen, the biocontrol agent, and soil organic matter quality. Phytopathology 96:186–189PubMedCrossRefGoogle Scholar
  70. Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10PubMedCrossRefGoogle Scholar
  71. Howell CR, Hanson LE, Stipanovic RD, Puckhaber LS (2000) Induction of terpenoid synthesis in cotton roots and control of Rhizoctonia solani by seed treatment with Trichoderma virens. Phytopathology 90:248–252PubMedCrossRefGoogle Scholar
  72. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261–271PubMedCrossRefGoogle Scholar
  73. Innocenti G, Roberti R, Piattoni F (2015) Biocontrol ability of Trichoderma harzianum strain T22 against Fusarium wilt disease on water-stressed lettuce plants. BioControl 60:573–581CrossRefGoogle Scholar
  74. Jogaiah S, Abdelrahman M, Tran LSP, Ito SI (2018) Different mechanisms of Trichoderma virens-mediated resistance in tomato against Fusarium wilt involve the jasmonic and salicylic acid pathways. Mol Plant Pathol 19:870–882PubMedCrossRefGoogle Scholar
  75. Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33:155PubMedCrossRefGoogle Scholar
  76. Keswani C, Bisen K, Singh SP, Sarma BK, Singh HB (2016) A proteomic approach to understand the tripartite interactions between plant-Trichoderma-pathogen: investigating the potential for efficient biological control. In: Plant, soil and microbes. Springer, Cham, pp 79–93CrossRefGoogle Scholar
  77. Khan J, Ooka JJ, Miller SA, Madden LV, Hoitink HAJ (2004) Systemic resistance induced by Trichoderma hamatum 382 in cucumber against Phytophthora crown rot and leaf blight. Plant Dis 88:280–286PubMedCrossRefGoogle Scholar
  78. Komis G, Šamajová O, Ovečka M, Šamaj J (2018) Cell and developmental biology of plant Mitogen-activated protein kinases. Annu Rev Plant Biol 69:237–265PubMedCrossRefGoogle Scholar
  79. Koornneef A, Pieterse CM (2008) Cross talk in defense signaling. Plant Physiol 146:839–844PubMedPubMedCentralCrossRefGoogle Scholar
  80. Korolev N, Rav-David D, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683CrossRefGoogle Scholar
  81. Kumar V, Parkhi V, Kenerley CM, Rathore KS (2009) Defense-related gene expression and enzyme activities in transgenic cotton plants expressing an endochitinase gene from Trichoderma virens in response to interaction with Rhizoctonia solani. Planta 230:277–291PubMedCrossRefGoogle Scholar
  82. Kurusu T, Hamada J, Nokajima H, Kitagawa Y, Kiyoduka M, Takahashi A, Hanamata S, Ohno R, Hayashi T, Okada K, Koga J (2010) Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 153:678–692PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lo CT, Nelson EB, Hayes CK, Harman GE (1998) Ecological studies of transformed Trichoderma harzianum strain 1295–22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129–136PubMedCrossRefGoogle Scholar
  84. López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123CrossRefGoogle Scholar
  85. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from omics to the field. Annu Rev Phytopathol 48:395–417PubMedCrossRefGoogle Scholar
  86. Luo Y, Zhang DD, Dong XW, Zhao PB, Chen LL, Song XY, Wang XJ, Chen XL, Shi M, Zhang YZ (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126PubMedCrossRefGoogle Scholar
  87. Macías-Rodríguez L, Guzmán-Gómez A, García-Juárez P, Contreras-Cornejo HA (2018) Trichoderma atroviride promotes tomato development and alters the root exudation of carbohydrates, which stimulates fungal growth and the biocontrol of the phytopathogen Phytophthora cinnamomi in a tripartite interaction system. FEMS Microbiol Ecol 94:137Google Scholar
  88. Maischak H, Zimmermann MR, Felle HH, Boland W, Mithöfer A (2010) Alamethicin-induced electrical long distance signaling in plants. Plant Signal Behav 5:988–990PubMedPubMedCentralCrossRefGoogle Scholar
  89. Malmierca MG, McCormick SP, Cardoza RE, Monte E, Alexander NJ, Gutiérrez S (2015a) Trichodiene production in a Trichoderma harzianum erg1-silenced strain provides evidence of the importance of the sterol biosynthetic pathway in inducing plant defense-related gene expression. Mol Plant-Microbe Interac 28:1181–1197CrossRefGoogle Scholar
  90. Malmierca MG, Barua J, McCormick SP, Izquierdo-Bueno I, Cardoza RE, Alexander NJ, Hermosa R, Collado IG, Monte E, Gutiérrez S (2015b) Novel aspinolide production by Trichoderma arundinaceum with a potential role in Botrytis cinerea antagonistic activity and plant defence priming. Environ Microbiol 17:1103–1118PubMedCrossRefGoogle Scholar
  91. Malmierca MG, Izquierdo-Bueno I, McCormick SP, Cardoza RE, Alexander NJ, Barua J, Lindo L, Casquero PA, Collado IG, Monte E, Gutiérrez S (2016a) Trichothecenes and aspinolides produced by Trichoderma arundinaceum regulate expression of Botrytis cinerea genes involved in virulence and growth. Environ Microbiol 18:3991–4004PubMedCrossRefGoogle Scholar
  92. Malmierca MG, Izquierdo-Bueno I, Mccormick SP, Cardoza RE, Alexander NJ, Moraga J, Gomes EV, Proctor RH, Collado IG, Monte E, Gutiérrez S (2016b) Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis. Mol Plant Pathol 17:1017–1031PubMedPubMedCentralCrossRefGoogle Scholar
  93. Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321PubMedCrossRefGoogle Scholar
  94. Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344PubMedPubMedCentralCrossRefGoogle Scholar
  95. Martínez-Medina A, Pascual JA, Pérez-Alfocea F, Albacete A, Roldán A (2010) Trichoderma harzianum and Glomus intraradices modify the hormone disruption induced by Fusarium oxysporum infection in melon plants. Phytopathology 100:682–688PubMedCrossRefGoogle Scholar
  96. Martínez-Medina A, Alguacil MDM, Pascual JA, Van Wees SC (2014) Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 40:804–815PubMedCrossRefGoogle Scholar
  97. Martínez-Medina A, Flors V, Heil M, Mauch-Mani B, Pieterse CM, Pozo MJ, Ton J, van Dam NM, Conrath U (2016) Recognizing plant defense priming. Trends Plant Sci 21:818–822PubMedCrossRefGoogle Scholar
  98. Martínez-Medina A, Fernandez I, Lok GB, Pozo MJ, Pieterse CM, Van Wees S (2017) Shifting from priming of salicylic acid-to jasmonic acid-regulated defences by Trichoderma protects tomato against the root knot nematode Meloidogyne incognita. New Phytol 213:1363–1377PubMedCrossRefGoogle Scholar
  99. Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221PubMedCrossRefGoogle Scholar
  100. Masunaka A, Hyakumachi M, Takenaka S (2011) Plant growth-promoting fungus, Trichoderma koningii suppresses isoflavonoid phytoalexin vestitol production for colonization on/in the roots of Lotus japonicus. Microb Environ 26:128–134CrossRefGoogle Scholar
  101. Matarasso N, Schuster S, Avni A (2005) A novel plant cysteine protease has a dual function as a regulator of 1-aminocyclopropane-1-carboxylic acid synthase gene expression. Plant Cell 17:1205–1216PubMedPubMedCentralCrossRefGoogle Scholar
  102. Mathys J, De Cremer K, Timmermans P, Van Kerkhove S, Lievens B, Vanhaecke M, Cammue B, De Coninck B (2012) Genome-wide characterization of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mauch-Mani B, Baccelli I, Luna E, Flors V (2017) Defense priming: an adaptive part of induced resistance. Annu Rev Plant Biol 68:485–512PubMedCrossRefGoogle Scholar
  104. Mayo S, Gutierrez S, Malmierca MG, Lorenzana A, Campelo MP, Hermosa R, Casquero PA (2015) Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defense-related genes. Front Plant Sci 6:685PubMedPubMedCentralCrossRefGoogle Scholar
  105. Mehari ZH, Elad Y, Rav-David D, Graber ER, Meller-Harel Y (2015) Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil 395:31–44CrossRefGoogle Scholar
  106. Meller-Harel Y, Mehari ZH, Rav-David D, Elad Y (2014) Systemic resistance to gray mold induced in tomato by benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157CrossRefGoogle Scholar
  107. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266PubMedCrossRefGoogle Scholar
  108. Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64:5687–5694PubMedCrossRefGoogle Scholar
  109. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum – plant beneficial interaction. Mol Plant-Microbe Interac 22:1021–1031CrossRefGoogle Scholar
  110. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165PubMedCrossRefGoogle Scholar
  111. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129PubMedCrossRefGoogle Scholar
  112. Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun 505:606–611PubMedCrossRefGoogle Scholar
  113. Naoumkina MA, Zhao Q, Gallego-Giraldo LINA, Dai X, Zhao PX, Dixon RA (2010) Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol 11:829–846PubMedPubMedCentralGoogle Scholar
  114. Nawrocka J, Małolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156CrossRefGoogle Scholar
  115. Nawrocka J, Małolepsza U, Szymczak K, Szczech M (2018) Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 255:359–373PubMedCrossRefGoogle Scholar
  116. Nesler A, Perazzolli M, Puopolo G, Giovannini O, Elad Y, Pertot I (2015) A complex protein derivative acts as biogenic elicitor of grapevine resistance against powdery mildew under field conditions. Front Plant Sci 6:715PubMedPubMedCentralCrossRefGoogle Scholar
  117. Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostás M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front. Plant Sci 8:102Google Scholar
  118. Okon Levy N, Meller Harel Y, Haile ZM, Elad Y, Rav-David D, Jurkevitch E, Katan J (2015) Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathol 64:365–374CrossRefGoogle Scholar
  119. Pel MJ, Pieterse CM (2012) Microbial recognition and evasion of host immunity. J Exp Bot 64:1237–1248PubMedCrossRefGoogle Scholar
  120. Perazzolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82CrossRefGoogle Scholar
  121. Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genomics 13:660PubMedPubMedCentralCrossRefGoogle Scholar
  122. Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521PubMedCrossRefGoogle Scholar
  123. Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347PubMedCrossRefGoogle Scholar
  124. Pozo MJ, Baek JM, Garcıa JM, Kenerley CM (2004) Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genet Biol 41:336–348PubMedCrossRefGoogle Scholar
  125. Ramirez-Prado JS, Abulfaraj AA, Rayapuram N, Benhamed M, Hirt H (2018) Plant immunity: from signaling to epigenetic control of defense. Trends Plant Sci 23:833–844PubMedCrossRefGoogle Scholar
  126. Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J, Zhang S (2008) A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci 105:5638–5643PubMedCrossRefGoogle Scholar
  127. Ron M, Avni A (2004) The receptor for the fungal elicitor ethylene-inducing xylanase is a member of a resistance-like gene family in tomato. Plant Cell 16:1604–1615PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A (2002) Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049–1055PubMedCrossRefGoogle Scholar
  129. Ruano-Rosa D, Prieto P, Rincón AM, Gómez-Rodríguez MV, Valderrama R, Barroso JB, Mercado-Blanco J (2016) Fate of Trichoderma harzianum in the olive rhizosphere: time course of the root colonization process and interaction with the fungal pathogen Verticillium dahliae. BioControl 61:269–282CrossRefGoogle Scholar
  130. Rubio MB, Hermosa R, Vicente R, Gómez-Acosta FA, Morcuende R, Monte E, Bettiol W (2017) The combination of Trichoderma harzianum and chemical fertilization leads to the deregulation of phytohormone networking, preventing the adaptive responses of tomato plants to salt stress. Front Plant Sci 8:294PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ruocco M, Lanzuise S, Vinale F, Marra R, Turrà D, Woo SL, Lorito M (2009) Identification of a new biocontrol gene in Trichoderma atroviride: the role of an ABC transporter membrane pump in the interaction with different plant-pathogenic fungi. Mol Plant-Microbe Interac 22:291–301CrossRefGoogle Scholar
  132. Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turrà D (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant-Microbe Interac 28:167–179CrossRefGoogle Scholar
  133. Ryder LS, Harris BD, Soanes DM, Kershaw MJ, Talbot NJ, Thornton CR (2012) Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology 158:84–97PubMedCrossRefGoogle Scholar
  134. Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26CrossRefGoogle Scholar
  135. Salas-Marina MA, Isordia-Jasso MI, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S (2015) The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens Solanum lycopersicum. Front Plant Sci 6:77PubMedPubMedCentralCrossRefGoogle Scholar
  136. Samolski I, Rincón AM, Pinzón LM, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138PubMedCrossRefGoogle Scholar
  137. Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J (2016) Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6:35543PubMedPubMedCentralCrossRefGoogle Scholar
  138. Sarrocco S, Matarese F, Baroncelli R, Vannacci G, Seidl-Seiboth V, Kubicek CP, Vergara M (2017) The constitutive endopolygalacturonase TvPG2 regulates the induction of plant systemic resistance by Trichoderma virens. Phytopathology 107:537–544PubMedCrossRefGoogle Scholar
  139. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952PubMedCrossRefGoogle Scholar
  140. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96PubMedCrossRefGoogle Scholar
  141. Segarra G, Casanova E, Avilés M, Trillas I (2010) Trichoderma asperellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb Ecol 59:141–149PubMedCrossRefGoogle Scholar
  142. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359PubMedCrossRefGoogle Scholar
  143. Shah J, Zeier J (2013) Long-distance communication and signal amplification in systemic acquired resistance. Front Plant Sci 4:30PubMedPubMedCentralCrossRefGoogle Scholar
  144. Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239PubMedCrossRefGoogle Scholar
  145. Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84PubMedCrossRefGoogle Scholar
  147. Shoresh M, Gal-On A, Leibman D, Chet I (2006) Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiol 142:1169–1179PubMedPubMedCentralCrossRefGoogle Scholar
  148. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedCrossRefGoogle Scholar
  149. Singh A, Gupta R, Srivastava M, Gupta MM, Pandey R (2016) Microbial secondary metabolites ameliorate growth, in planta contents and lignification in Withania somnifera (L.) Dunal. Physiol Mol Biol Plants 22:253–260PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sriram S, Manasa SB, Savitha MJ (2009) Potential use of elicitors from Trichoderma in induced systemic resistance for the management of Phytophthora capsici in red pepper. J Biol Control 23:449–456Google Scholar
  151. Stergiopoulos I, de Wit PJ (2009) Fungal effector proteins. Annu Rev Phytopathol 47:233–263PubMedCrossRefGoogle Scholar
  152. Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Beale M, Ward J, Thornton CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture insights from genomics. Front Plant Sci 4:258PubMedPubMedCentralCrossRefGoogle Scholar
  153. Sun J, Zhang T, Li Y, Wang X, Chen J (2019) Functional characterization of the ABC transporter TaPdr2 in the tolerance of biocontrol the fungus Trichoderma atroviride T23 to dichlorvos stress. Biol Control 129:102–108CrossRefGoogle Scholar
  154. Tucci M, Ruocco M, De Masi L, De Palma M, Lorito M (2011) The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Mol Plant Pathol 12:341–354PubMedCrossRefGoogle Scholar
  155. Uchiyama R, Aoki K, Sugimoto H, Taka N, Katayama T, Itonori S, Sugita M, Che FS, Kumagai H, Yamamoto K (2009) Phosphocholine-containing glycosyl inositol-phosphoceramides from Trichoderma viride induce defense responses in cultured rice cells. Biosci Biotechnol Biochem 73:74–78PubMedCrossRefGoogle Scholar
  156. Van Bel AJ, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:495–504CrossRefGoogle Scholar
  157. Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448PubMedCrossRefGoogle Scholar
  158. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808PubMedPubMedCentralCrossRefGoogle Scholar
  159. Velázquez-Robledo R, Contreras-Cornejo HA, Macías-Rodríguez L, Hernández-Morales A, Aguirre J, Casas-Flores S, López-Bucio J, Herrera-Estrella A (2011) Role of the 4-phosphopantetheinyl transferase of Trichoderma virens in secondary metabolism and induction of plant defense responses. Mol Plant-Microbe Interac 24:1459–1471CrossRefGoogle Scholar
  160. Vinale F, Marra R, Scala F, Ghisalberti EL, Lorito M, Sivasithamparam K (2006) Major secondary metabolites produced by two commercial Trichoderma strains active against different phytopathogens. Lett Appl Microbiol 43:143–148PubMedCrossRefGoogle Scholar
  161. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008a) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  162. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008b) Trichoderma – plant–pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  163. Vinale F, Ghisalberti EL, Sivasithamparam K, Marra R, Ritieni A, Ferracane R, Woo S, Lorito M (2009) Factors affecting the production of Trichoderma harzianum secondary metabolites during the interaction with different plant pathogens. Lett Appl Microbiol 48:705–711PubMedGoogle Scholar
  164. Vinale F, Girona IA, Nigro M, Mazzei P, Piccolo A, Ruocco M, Woo S, Rosa DR, Herrera CL, Lorito M (2011) Cerinolactone, a hydroxy-lactone derivative from Trichoderma cerinum. J Nat Prod 75:103–106PubMedCrossRefGoogle Scholar
  165. Vinale F, Sivasithamparam K, Ghisalberti EL, Woo SL, Nigro M, Marra R, Lombardi N, Pascale A, Ruocco M, Lanzuise S, Manganiello G (2014) Trichoderma secondary metabolites active on plants and fungal pathogens. Open Mycol J 8(1):127CrossRefGoogle Scholar
  166. Vitale A, Cirvilleri G, Castello I, Aiello D, Polizzi G (2012) Evaluation of Trichoderma harzianum strain T22 as biological control agent of Calonectria pauciramosa. BioControl 57:687–696CrossRefGoogle Scholar
  167. Viterbo ADA, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258PubMedCrossRefGoogle Scholar
  168. Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158PubMedGoogle Scholar
  169. Viterbo ADA, Wiest ARIC, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746PubMedCrossRefGoogle Scholar
  170. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48PubMedCrossRefGoogle Scholar
  171. Vitti A, Pellegrini E, Nali C, Lovelli S, Sofo A, Valerio M, Scopa A, Nuzzaci M (2016) Trichoderma harzianum T-22 induces systemic resistance in tomato infected by Cucumber mosaic virus. Front Plant Sci 7:1520PubMedPubMedCentralCrossRefGoogle Scholar
  172. Vizcaíno JA, Cardoza RE, Hauser M, Hermosa R, Rey M, Llobell A, Becker JM, Gutiérrez S, Monte E (2006) ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol 43:234–246PubMedCrossRefGoogle Scholar
  173. Vos IA, Moritz L, Pieterse CM, Van Wees S (2015) Impact of hormonal crosstalk on plant resistance and fitness under multi-attacker conditions. Front Plant Sci 6:639PubMedPubMedCentralCrossRefGoogle Scholar
  174. Wang KLC, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151CrossRefGoogle Scholar
  175. Xiao-Yan S, Qing-Tao S, Shu-Tao X, Xiu-Lan C, Cai-Yun S, Yu-Zhong Z (2006) Broad-spectrum antimicrobial activity and high stability of Trichokonins from Trichoderma koningii SMF2 against plant pathogens. FEMS Microbiol Lett 260:119–125PubMedCrossRefGoogle Scholar
  176. Xu J, Zhang S (2015) Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20:56–64PubMedCrossRefGoogle Scholar
  177. Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yedidia I, Benhamou N, Kapulnik Y, Chet I (2000) Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol Biochem 38:863–873CrossRefGoogle Scholar
  179. Yedidia I, Shoresh M, Kerem Z, Benhamou N, Kapulnik Y, Chet I (2003) Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl Environ Microbiol 69:7343–7353PubMedPubMedCentralCrossRefGoogle Scholar
  180. Yoshioka Y, Ichikawa H, Naznin HA, Kogure A, Hyakumachi M (2012) Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Pest Manag Sci 68:60–66PubMedCrossRefGoogle Scholar
  181. Zhao J (2015) Phospholipase D and phosphatidic acid in plant defence response: from protein–protein and lipid–protein interactions to hormone signalling. J Exp Bot 66:1721–1736PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zhao P, Ren A, Dong P, Sheng Y, Li D (2018) Antimicrobial peptaibols, trichokonins, inhibit mycelial growth and sporulation and induce cell apoptosis in the pathogenic fungus Botrytis cinerea. Appl Biochem Microbiol 54:396–403CrossRefGoogle Scholar
  183. Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12:414–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Plant Pathology and Weed ResearchARO, The Volcani CenterRishon LeZionIsrael

Personalised recommendations