Advertisement

Trichoderma pp 19-33 | Cite as

The Vocabulary of Trichoderma-Plant Interactions

  • M. M. Monti
  • P. A. Pedata
  • L. Gualtieri
  • M. RuoccoEmail author
Chapter
  • 82 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

In their natural environment, plants and microorganisms are persistently associated and communicating. This interaction is a finely tuned interplay triggered by chemical messages continuously exchanged by the actors. Recent studies confirm that the plant microbiome at root level is highly involved in many nutrient and biological processes. Commonly, soil and rhizosphere microbiome include species of Trichoderma genus, strongly influencing plant growth and differentiation and resistance to factors of abiotic and biotic stresses. Since we are imagining a molecular talk between the two interlocutors, here we produce the Trichoderma vocabulary, where we go through all its known “words”. MAMPs will be described according to the classes listed below: microbial phytohormones (MP), proteins, secondary metabolites (SM) including microbial volatile organic compounds (MVOCs), other SM, and peptaibols. In the present vocabulary, we have included only those Trichoderma-secreted MAMPs for which a clear biological activity on plant has been demonstrated. In the present chapter, we aim at describing the factors known to participate in the multifaceted chatting between Trichoderma and its roommates, mainly the plant.

Keywords

Trichoderma Microbial phytohormones Secondary metabolites Microbial volatile organic compounds (MVOCs) Peptaibols 

References

  1. Avni A, Bailey BA, Mattoo AK, Anderson JD (1994) Induction of ethylene biosynthesis in Nicotiana tabacum by a Trichoderma viride xylanase is correlated to the accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and oxidase transcripts. Plant Physiol 106:1049–1055PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bailey BA, Dean JFD, Anderson JD (1990) An Ethylene biosynthesis inducing Endoxylanase elicits electrolyte leakage and necrosis in nicotiana tabacum cv xanthi leaves. Plant Physiol 94:1849–1854PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bailey BA, Korcak RF, Anderson JD (1993) Sensitivity to an Ethylene Biosynthesis inducing Endoxylanase in Nicotiana tabacum cv Xanthi is controlled by a single dominant gene. Plant Physiol 101:1081–1088PubMedPubMedCentralCrossRefGoogle Scholar
  4. Brakhage AA, Schroeckh V (2011) Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet Biol 48:15–22PubMedCrossRefGoogle Scholar
  5. Brewer D, Mason FG, Taylor A (1987) The production of alamethicins by Trichoderma spp. Can J Microbiol 33:619–625PubMedCrossRefGoogle Scholar
  6. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789PubMedPubMedCentralCrossRefGoogle Scholar
  7. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113PubMedCrossRefGoogle Scholar
  8. Calderon AA, Zapata JM, Munoz R, Pedreno MA, Barcelo AR (1993) Resveratrol production as a part of the hypersensitive like response of grapevine cells to an elicitor from Trichoderma viride. New Phytol 124:455–463CrossRefGoogle Scholar
  9. Caporale AG, Vitaglione P, Troise AD, Pigna M, Ruocco M (2019) Influence of three different soil types on the interaction of two strains of Trichoderma harzianum with Brassica rapa subsp sylvestris cv esculenta, under soil mineral fertilization. Geoderma 350:11–18CrossRefGoogle Scholar
  10. Contreras-Cornejo AH, Macias-Rodriguez L, Cortes-Penagos C, Lopez-Bucio J (2009) Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in arabidopsis. Plant Physiol 149:1579–1592PubMedPubMedCentralCrossRefGoogle Scholar
  11. Contreras-Cornejo AH, Macias-Rodriguez L, Herrera-Estrella A, Lopez-Bucio J (2014) The 4-phosphopantetheinyl transferase of Trichoderma virens plays a role in plant protection against Botrytis cinerea through volatile organic compound emission. Plant and Soil 379:261–274CrossRefGoogle Scholar
  12. Crutcher FK, Kenerley CM (2019) Analysis of a putative glycosylation site in the Trichoderma virens elicitor SM1 reveals no role in protein dimerization. Biochem Biophys Res Commun 509:817–821PubMedCrossRefGoogle Scholar
  13. De Palma M, Salzano M, Villano C, Aversano R, Lorito M, Ruocco M, Docimo T, Piccinelli AL, D’Agostino N, Tucci M (2019) Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic Res 6:5PubMedPubMedCentralCrossRefGoogle Scholar
  14. Dean JFD, Gamble HR, Anderson JD (1989) The Ethylene biosynthesis-inducing xylanase- its induction in Trichoderma viride and certain plant pathogens. Phytopathology 79:1071–1078CrossRefGoogle Scholar
  15. Djonovic S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM (2006) Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838–853PubMedCrossRefGoogle Scholar
  16. Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM (2007) A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875–889PubMedPubMedCentralCrossRefGoogle Scholar
  17. Duclohier H, Wroblewski H (2001) Voltage-dependent pore formation and antimicrobial activity by alamethicin and analogues. J Membr Biol 184:1–12PubMedCrossRefGoogle Scholar
  18. Engelberth J, Koch T, Schuler G, Bachmann N, Rechtenbach J, Boland W (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol 125:369–377PubMedPubMedCentralCrossRefGoogle Scholar
  19. Freitas RS, Steindorff AS, Ramada MH, Linhares de Siqueira SJ, Noronha EF, Ulhoa CJ (2014) Cloning and characterization of a protein elicitor Sm1 gene from Trichoderma harzianum. Biotechnol Lett 36:783–788PubMedCrossRefGoogle Scholar
  20. Frischmann A, Neudl S, Gaderer R, Bonazza K, Zach S, Gruber S, Spadiut O, Friedbacher G, Grothe H, Seidl-Seiboth V (2013) Self-assembly at air/water interfaces and carbohydrate binding properties of the small secreted protein EPL1 from the fungus Trichoderma atroviride. J Biol Chem 288:4278–4287PubMedCrossRefGoogle Scholar
  21. Gaderer R, Lamdan NL, Frischmann A, Sulyok M, Krska R, Horwitz BA, Seidl-Seiboth V (2015) Sm2, a paralog of the Trichoderma cerato-platanin elicitor Sm1, is also highly important for plant protection conferred by the fungal-root interaction of Trichoderma with maize. BMC Microbiol 15:2PubMedPubMedCentralCrossRefGoogle Scholar
  22. Garnica-Vergara A, Barrera-Ortiz S, Munoz-Parra E, Raya-Gonzalez J, Mendez-Bravo A, Macias-Rodriguez L, Francisco Ruiz-Herrera L, Lopez-Bucio J (2016) The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ETHYLENE INSENSITIVE 2 functioning. New Phytol 209:1496–1512PubMedCrossRefGoogle Scholar
  23. Guzmán-Guzmán P, Alemán-Duarte MI, Delaye L, Herrera-Estrella A, Olmedo-Monfil V (2017) Identification of effector-like proteins in Trichoderma spp and role of a hydrophobin in the plant-fungus interaction and mycoparasitism. BMC Genet 18:16PubMedPubMedCentralCrossRefGoogle Scholar
  24. Hanson LE, Howell CR (2004) Elicitors of plant defense responses from biocontrol strains of Trichoderma virens. Phytopathology 94:171–176PubMedCrossRefGoogle Scholar
  25. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species - opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56PubMedCrossRefGoogle Scholar
  26. Hermosa R, Elena Cardoza R, Belen Rubio M, Gutierrez S, Monte E (2014) Secondary metabolism and antimicrobial metabolites of Trichoderma. In: Gupta VK, Schmoll M, Herrera Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma. Newnes, Oxford.  https://doi.org/10.1016/B978-0-444-59576-8.00010-2CrossRefGoogle Scholar
  27. Kanchiswamy CN, Mainoy M, Maffei ME (2015) Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 6:151PubMedPubMedCentralCrossRefGoogle Scholar
  28. Lamdan N-L, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14:1054–1063PubMedPubMedCentralCrossRefGoogle Scholar
  29. Lee S, Behringer G, Hung R, Bennett J (2019) Effects of fungal volatile organic compounds on Arabidopsis thaliana growth and gene expression. Fungal Ecol 37:1–9CrossRefGoogle Scholar
  30. Luo Y, Zhang D-D, Dong X-W, Zhao P-B, Chen L-L, Song X-Y, Wang X-J, Chen X-L, Shi M, Zhang Y-Z (2010) Antimicrobial peptaibols induce defense responses and systemic resistance in tobacco against tobacco mosaic virus. FEMS Microbiol Lett 313:120–126PubMedCrossRefGoogle Scholar
  31. Malmierca MG, Cardoza RE, Alexander NJ, McCormick SP, Hermosa R, Monte E, Gutierrez S (2012) Involvement of Trichoderma Trichothecenes in the biocontrol activity and induction of plant defense-related genes. Appl Environ Microbiol 78:4856–4868PubMedPubMedCentralCrossRefGoogle Scholar
  32. Malmierca MG, McCormick SP, Cardoza RE, Alexander NJ, Monte E, Gutierrez S (2015) Production of trichodiene by Trichoderma harzianum alters the perception of this biocontrol strain by plants and antagonized fungi. Environ Microbiol 17:2628–2646PubMedCrossRefGoogle Scholar
  33. Marra R, Lombardi N, d’Errico G, Troisi J, Scala G, Vinale F, Woo S, Lonanomi G, Lorito M (2019) Application of Trichoderma strains and metabolites enhances soybean productivity and nutrient content. J Agric Food Chem 67:1814PubMedCrossRefGoogle Scholar
  34. Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC (2001) Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334–344PubMedPubMedCentralCrossRefGoogle Scholar
  35. Moran-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutierrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031PubMedCrossRefGoogle Scholar
  36. Moscatiello R, Sello S, Ruocco M, Barbulova A, Cortese E, Nigris S, Baldan B, Chiurazzi M, Mariani P, Lorito M, Navazio L (2018) The hydrophobin HYTLO1 secreted by the biocontrol fungus Trichoderma longibrachiatum triggers a NAADP-mediated calcium signalling pathway in lotus japonicus. Int J Mol Sci 19:E2596PubMedCrossRefGoogle Scholar
  37. Mukherjee PK, Buensanteai N, Moran-Diez ME, Druzhinina IS, Kenerley CM (2012a) Functional analysis of non-ribosomal peptide synthetases (NRPSs) in Trichoderma virens reveals a polyketide synthase (PKS)/NRPS hybrid enzyme involved in the induced systemic resistance response in maize. Microbiology 158:155–165PubMedCrossRefGoogle Scholar
  38. Mukherjee PK, Horwitz BA, Kenerley CM (2012b) Secondary metabolism in Trichoderma - a genomic perspective. Microbiology 158:35–45PubMedCrossRefGoogle Scholar
  39. Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM (2018) Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun 505:606–611PubMedCrossRefGoogle Scholar
  40. Nieto-Jacobo MF, Steyaert JM, Salazar-Badillo FB, Nguyen DV, Rostas M, Braithwaite M, De Souza JT, Jimenez-Bremont JF, Ohkura M, Stewart A, Mendoza-Mendoza A (2017) Environmental growth conditions of Trichoderma spp. affects indole acetic acid derivatives, volatile organic compounds, and plant growth promotion. Front Plant Sci 8:102PubMedPubMedCentralCrossRefGoogle Scholar
  41. Nogueira-Lopez G, Greenwood DR, Middleditch M, Winefield C, Eaton C, Steyaert JM, Mendoza-Mendoza A (2018) The apoplastic secretome of Trichoderma virens during interaction with maize roots shows an inhibition of plant defence and scavenging oxidative stress secreted proteins. Front Plant Sci 9:509CrossRefGoogle Scholar
  42. Piel J, Atzorn R, Gabler R, Kuhnemann F, Poland W (1997) Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade. FEBS Lett 416:143–148PubMedCrossRefGoogle Scholar
  43. Przylucka A, Akcapinar GB, Chenthamara K, Cai F, Grujic M, Karpenko J, Livoi M, Shen Q, Kubicek CP, Druzhinina IS (2017) HFB7-A novel orphan hydrophobin of the Harzianum and Virens clades of Trichoderma, is involved in response to biotic and abiotic stresses. Fungal Genet Biol 102:63–76PubMedCrossRefGoogle Scholar
  44. Ron M, Kantety R, Martin GB, Avidan N, Eshed Y, Zamir D, Avni A (2000) High-resolution linkage analysis and physical characterization of the EIX-responding locus in tomato. Theor Appl Genet 100:184–189CrossRefGoogle Scholar
  45. Rosado IV, Rey M, Codon AC, Govantes J, Moreno-Mateos MA, Benitez T (2007) QID74 Cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44:950–964PubMedCrossRefGoogle Scholar
  46. Ruocco M, Lanzuise S, Lombardi N, Woo SL, Vinale F, Marra R, Varlese R, Manganiello G, Pascale A, Scala V, Turra D, Scala F, Lorito M (2015) Multiple roles and effects of a novel Trichoderma hydrophobin. Mol Plant Microbe Interact 28:167–179PubMedCrossRefGoogle Scholar
  47. Samolski I, Rincon AM, Mary Pinzon L, Viterbo A, Monte E (2012) The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–138PubMedCrossRefGoogle Scholar
  48. Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J (2016) Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6:35543PubMedPubMedCentralCrossRefGoogle Scholar
  49. Saravanakumar K, Lu Z, Xia H, Wang M, Sun J, Wang S, Wang Q-q, Li Y, Chen J (2018) Triggering the biocontrol of Botrytis cinerea by Trichoderma harzianum through inhibition of pathogenicity and virulence related proteins. Front Agric Sci Eng 5:271–279Google Scholar
  50. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359PubMedCrossRefGoogle Scholar
  51. Seidl-Seiboth V, Gruber S, Sezerman U, Schwecke T, Albayrak A, Neuhof T, von Doehren H, Baker SE, Kubicek CP (2011) Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351PubMedCrossRefGoogle Scholar
  52. Shi W-L, Chen X-L, Wang L-X, Gong Z-T, Li S, Li C-L, Xie BB, Zhang W, Shi M, Li C, Zhang Y-Z, Son X-Y (2016) Cellular and molecular insight into the inhibition of primary root growth of Arabidopsis induced by peptaibols, a class of linear peptide antibiotics mainly produced by Trichoderma spp. J Exp Bot 67:2191–2205PubMedPubMedCentralCrossRefGoogle Scholar
  53. Vargas WA, Mandawe JC, Kenerley CM (2009) Plant-derived sucrose is a key element in the symbiotic association between Trichoderma virens and maize plants. Plant Physiol 151:792–808PubMedPubMedCentralCrossRefGoogle Scholar
  54. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ, Li H, Woo SL, Lorito M (2008) A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol Mol Plant Pathol 72:80–86CrossRefGoogle Scholar
  55. Vinale F, Flematti G, Sivasithamparam K, Lorito M, Marra R, Skelton BW, Ghisalberti EL (2009) Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J Nat Prod 72:2032PubMedCrossRefGoogle Scholar
  56. Vinale F, Nigro M, Sivasithamparam K, Flematti G, Ghisalberti EL, Ruocco M, Varlese R, Marra R, Lanzuise S, Eid A, Woo SL, Lorito M (2013) Harzianic acid: a novel siderophore from Trichoderma harzianum. FEMS Microbiol Lett 347:123–129PubMedGoogle Scholar
  57. Vinale F, Manganiello G, Nigro M, Mazzei P, Piccolo A, Pascale A, Ruocco M, Marra R, Lombardi N, Lanzuise S, Varlese R, Cavallo P, Lorito M, Woo SL (2014) A novel fungal metabolite with beneficial properties for agricultural applications. Molecules 19:9760–9772PubMedPubMedCentralCrossRefGoogle Scholar
  58. Viterbo A, Chet I (2006) TasHyd1, a new hydrophobin gene from the biocontrol agent Trichoderma asperellum, is involved in plant root colonization. Mol Plant Pathol 7:249–258PubMedCrossRefGoogle Scholar
  59. Viterbo A, Wiest A, Brotman Y, Chet I, Kenerley C (2007) The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol Plant Pathol 8:737–746PubMedCrossRefGoogle Scholar
  60. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48PubMedCrossRefGoogle Scholar
  61. Yu W, Mijiti G, Huang Y, Fan H, Wang Y, Liu Z (2018) Functional analysis of eliciting plant response protein Epl1-Tas from Trichoderma asperellum ACCC30536. Sci Rep 8:7974PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • M. M. Monti
    • 1
  • P. A. Pedata
    • 1
  • L. Gualtieri
    • 1
  • M. Ruocco
    • 1
    Email author
  1. 1.Institute for Sustainable Plant Protection (IPSP-CNR)PorticiItaly

Personalised recommendations