Advertisement

Trichoderma pp 293-314 | Cite as

Trichoderma Interactions in Vegetable Rhizosphere Under Tropical Weather Conditions

  • William Rivera-MéndezEmail author
Chapter
  • 54 Downloads
Part of the Rhizosphere Biology book series (RHBIO)

Abstract

The use of Trichoderma in world agriculture has established itself as an alternative for sustainable production. Not always bioproducts developed in other latitudes have managed to respond adequately when they are introduced in soils of tropical climate. It has been mentioned that poor adaptation to these conditions causes some isolates not to be incorporated into the soil microbiome; however, several factors regulate the structure of a microorganism’s community associated with a crop. This chapter details aspect related to research with native isolates with the aim of improving the inoculation techniques of the fungus and its establishment in rhizosphere of onion, garlic, and sweet pepper crops, under tropical environmental conditions in Central America. Tests carried out over several years have shown that even native isolates may have an irregular behavior in terms of their capacity for mycoparasitism, growth regulation, and influence on yield. It is necessary to deepen into the way in which biological control mechanisms of each Trichoderma species and isolates are affected by the soil dynamics, the climatic factors, the systems and intensity of the crop, and the forms of inoculation.

Keywords

Vegetable rhizosphere Tropical weather Soil microbiome Growth regulation Yield Onion Sweet pepper 

References

  1. Afsharmanesh H, Ahmadzadeh M, Javan-Nikkhah M, Behboudi K (2010) Characterization of the antagonistic activity of a new indigenous strain of Pseudomonas fluorescens isolated from onion rhizosphere. J Plant Pathol 92:187–194Google Scholar
  2. Almeida KA, Armesto C, Monteiro FP, de Souza JT (2018) Diversity of Trichoderma species isolated from dead branches and sapwood of Theobroma cacao trees. Trop Plant Pathol 43(1):90–94CrossRefGoogle Scholar
  3. Alvarado-Marchena L, Rivera-Méndez W (2016) Molecular identification of Trichoderma spp. in garlic and onion fields and in vitro antagonism trials on Sclerotium cepivorum. Rev Bras Ciênc Solo 40Google Scholar
  4. Atanasova L, Le Crom S, Gruber S, Coulpier F, Seidl-Seiboth V, Kubicek CP, Druzhinina IS (2013) Comparative transcriptomics reveals different strategies of En la comprensión Trichoderma mycoparasitism. BMC Genomics 14(1):121PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bailey BA, Bae H, Strem MD, Crozier J, Thomas SE, Samuels GJ et al (2008) Antibiosis, mycoparasitism, and colonization success for endophytic Trichoderma isolates with biological control potential in Theobroma cacao. Biol Control 46(1):24–35CrossRefGoogle Scholar
  6. Bal U, Altintas S (2006) Application of the antagonistic fungus Trichoderma harzianum (TrichoFlow WP™) to root zone increases yield of bell peppers grown in soil. Biol Agric Hortic 24(2):149–163CrossRefGoogle Scholar
  7. Barlow J, França F, Gardner TA, Hicks CC, Lennox GD, Berenguer E et al (2018) The future of hyperdiverse tropical ecosystems. Nature 559(7715):517PubMedCrossRefPubMedCentralGoogle Scholar
  8. Berg G, Rybakova D, Grube M, Köberl M (2015) The plant microbiome explored: implications for experimental botany. J Exp Bot 67(4):995–1002PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bettiol W, Rivera MC, Mondino P, Montealegre JR, Colmenarez Y (2014). Control biológico de enfermedades de plantas en América Latina y el Caribe. Embrapa Meio Ambiente-Livro científico (ALICE)Google Scholar
  10. Brenes-Madriz J, Zúñiga-Vega C, Villalobos-Araya M, Zúñiga-Poveda C, Rivera-Méndez W (2019) Efectos de Trichoderma asperellum en la estimulación del crecimiento en chile dulce (Capsicum annum) variedad Nathalie en ambientes protegidos. Rev Tecnol Marcha.  https://doi.org/10.18845/tm.v32i3.4481
  11. Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838PubMedCrossRefGoogle Scholar
  12. Coşkuntuna A, Özer N (2008) Biological control of onion basal rot disease using Trichoderma harzianum and induction of antifungal compounds in onion set following seed treatment. Crop Prot 27(3–5):330–336CrossRefGoogle Scholar
  13. Cummings NJ, Ambrose A, Braithwaite M, Bissett J, Roslan HA, Abdullah J et al (2016) Diversity of root-endophytic Trichoderma from Malaysian Borneo. Mycol Prog 15(5):50CrossRefGoogle Scholar
  14. De Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L et al (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110(35):14296–14301PubMedCrossRefGoogle Scholar
  15. Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15(10):579PubMedCrossRefGoogle Scholar
  16. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631PubMedCrossRefGoogle Scholar
  17. Gardner T, Acosta-Martinez V, Senwo Z, Dowd SE (2011) Soil rhizosphere microbial communities and enzyme activities under organic farming in Alabama. Diversity 3(3):308–328CrossRefGoogle Scholar
  18. Geerts B, Linacre E (2002) Climates and weather explained. Routledge, LondonCrossRefGoogle Scholar
  19. Ghini R, Bettiol W, Hamada E (2011) Diseases in tropical and plantation crops as affected by climate changes: current knowledge and perspectives. Plant Pathol 60(1):122–132CrossRefGoogle Scholar
  20. Gomes NCM, Fagbola O, Costa R, Rumjanek NG, Buchner A, Mendona-Hagler L, Smalla K (2003) Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl Environ Microbiol 69(7):3758–3766PubMedPubMedCentralCrossRefGoogle Scholar
  21. Green JL et al (2004) Spatial scaling of microbial eukaryote diversity. Nature 432(7018):747PubMedCrossRefGoogle Scholar
  22. Hamilton CE, Bever JD, Labbé J, Yang X, Yin H (2016) Mitigating climate change through managing constructed-microbial communities in agriculture. Agric Ecosyst Environ 216:304–308CrossRefGoogle Scholar
  23. Jacobs JL, Fasi AC, Ramette A, Smith JJ, Hammerschmidt R, Sundin GW (2008) Identification and onion pathogenicity of Burkholderia cepacia complex isolates from the onion rhizosphere and onion field soil. Appl Environ Microbiol 74(10):3121–3129PubMedPubMedCentralCrossRefGoogle Scholar
  24. Jain A, Singh A, Singh BN, Singh S, Upadhyay RS, Sarma BK, Singh HB (2013) Biotic stress management in agricultural crops using microbial consortium. In: Bacteria in agrobiology: disease management. Springer, Berlin, pp 427–448CrossRefGoogle Scholar
  25. Johns NI, Blazejewski T, Gomes AL, Wang HH (2016) Principles for designing synthetic microbial communities. Curr Opin Microbiol 31:146–153PubMedPubMedCentralCrossRefGoogle Scholar
  26. Jung BK, Sang-Dal K, Khan AR, Jong-Hui L, Kim YH, Song JH et al (2015) Rhizobacterial communities and red pepper (Capsicum annum) yield under different cropping systems. Int J Agric Biol 17(4):734CrossRefGoogle Scholar
  27. Kashyap PL, Rai P, Srivastava AK, Kumar S (2017) Trichoderma for climate resilient agriculture. World J Microbiol Biotechnol 33(8):155PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kim YT, Cho M, Jeong JY, Lee HB, Kim SB (2010) Application of terminal restriction fragment length polymorphism (T-RFLP) analysis to monitor effect of biocontrol agents on rhizosphere microbial community of hot pepper (Capsicum annuum L.). J Microbiol 48(5):566–572PubMedCrossRefGoogle Scholar
  29. Kolton M, Harel YM, Pasternak Z, Graber ER, Elad Y, Cytryn E (2011) Impact of biochar application to soil on the root-associated bacterial community structure of fully developed greenhouse pepper plants. Appl Environ Microbiol 7(14):4924–4930CrossRefGoogle Scholar
  30. Lamdan NL, Shalaby S, Ziv T, Kenerley CM, Horwitz BA (2015) Secretome of Trichoderma interacting with maize roots: role in induced systemic resistance. Mol Cell Proteomics 14(4):1054–1063PubMedPubMedCentralCrossRefGoogle Scholar
  31. López-Bucio J, Pelagio-Flores R, Herrera-Estrella A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123CrossRefGoogle Scholar
  32. Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206PubMedPubMedCentralCrossRefGoogle Scholar
  33. Mayfield MM, Bonser SP, Morgan JW, Aubin I, McNamara S, Vesk PA (2010) What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob Ecol Biogeogr 19(4):423–431Google Scholar
  34. Mendes LW, Tsai SM, Navarrete AA, De Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70(1):255–265PubMedCrossRefGoogle Scholar
  35. Mendoza-Mendoza A, Zaid R, Lawry R, Hermosa R, Monte E, Horwitz BA, Mukherjee PK (2018) Molecular dialogues between Trichoderma and roots: role of the fungal secretome. Fungal Biol Rev 32(2):62–85CrossRefGoogle Scholar
  36. Metcalf DA, Dennis JJC, Wilson CR (2004) Effect of inoculum density of Sclerotium cepivorum on the ability of Trichoderma koningii to suppress white rot of onion. Plant Dis 88(3):287–291PubMedCrossRefGoogle Scholar
  37. Miranda MA, Estrella AH, Cabriales JP (2006) Colonization of the rhizosphere, rhizoplane and endorhiza of garlic (Allium sativum L.) by strains of Trichoderma harzianum and their capacity to control allium white-rot under field conditions. Soil Biol Biochem 38(7):1823–1830CrossRefGoogle Scholar
  38. Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S (2012) Trichoderma–plant–pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52(4):522–529PubMedPubMedCentralCrossRefGoogle Scholar
  39. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129PubMedPubMedCentralCrossRefGoogle Scholar
  40. Nuccio EE, Anderson-Furgeson J, Estera KY, Pett-Ridge J, de Valpine P, Brodie EL, Firestone MK (2016) Climate and edaphic controllers influence rhizosphere community assembly for a wild annual grass. Ecology 97(5):1307–1318PubMedCrossRefGoogle Scholar
  41. Okoth SA, Okoth P, Muya E (2009) Influence of soil chemical and physical properties on occurrence of Trichoderma spp. in Embu, Kenya. Trop Subtrop Agroecosyst 11(2):303–312Google Scholar
  42. Özer N, Köycü ND (2004) Seed-borne fungal diseases of onion, and their control. In: Fruit and vegetable diseases. Springer, Dordrecht, pp 281–306CrossRefGoogle Scholar
  43. Rivera-Méndez W (2016) Microbiological control as experience of local sustainability in Central American agriculture. Tecnol Marcha 30(4):31–40Google Scholar
  44. Rivera-Méndez W, Brenes-Madriz J, Zúñiga-Vega O (2018a) Efectos de la aplicación de Trichoderma asperellum y su filtrado en el crecimiento de almácigos de cebolla (Allium cepa). Rev Tecnol Marcha 31(2):98–105CrossRefGoogle Scholar
  45. Rivera-Méndez W, Fuentes-Alfaro R, Courrau-López K, Aguilar-Ulloa W, Zúñiga-Vega C, Brenes-Madriz J (2018b) Biological control of Setophoma terrestris isolated from onion rhizosphere in Costa Rica. Arch Phytopathol Plant Protect:1–12.  https://doi.org/10.1080/03235408.2018.1548258
  46. Rivera-Méndez W, Obregón M, Morán-Diez ME, Hermosa R, Monte E (2020) Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biol Control 141:104145CrossRefGoogle Scholar
  47. Sanchez PA (2019) Properties and management of soils in the tropics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Serna-Chavez HM, Fierer N, Van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Glob Ecol Biogeogr 22(10):1162–1172CrossRefGoogle Scholar
  49. Shade A, Handelsman J (2011) Beyond the Venn diagram: the hunt for a core microbiomeemi_2585Google Scholar
  50. Singh V, Ray S, Bisen K, Keswani C, Upadhyay RS, Sarma BK, Singh HB (2017) Unravelling the dual applications of Trichoderma spp. as biopesticide and biofertilizer. Adv PGPR Res 364Google Scholar
  51. Singh P, Hussain T, Patel S, Akhtar N (2018) Impact of climate change on root–pathogen interactions. In: Root biology. Springer, Cham, pp 409–427CrossRefGoogle Scholar
  52. Uzo JO, Currah L (2018) Cultural systems and agronomic practices in tropical climates. In: Onions and allied crops: Volume II: Agronomy biotic interactions. CRC Press, Boca Raton, FLGoogle Scholar
  53. Viterbo A, Ramot O, Chernin L, Chet I (2002) Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek 81(1–4):549–556PubMedCrossRefGoogle Scholar
  54. Wang P, Marsh EL, Ainsworth EA, Leakey AD, Sheflin AM, Schachtman DP (2017) Shifts in microbial communities in soil, rhizosphere and roots of two major crop systems under elevated CO2 and O3. Sci Rep 7(1):15019PubMedPubMedCentralCrossRefGoogle Scholar
  55. Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N et al (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(1):71CrossRefGoogle Scholar
  56. Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA et al (2017) Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8(1):215PubMedPubMedCentralCrossRefGoogle Scholar
  57. Zachow C, Berg C, Müller H, Monk J, Berg G (2016) Endemic plants harbour specific Trichoderma communities with an exceptional potential for biocontrol of phytopathogens. J Biotechnol 235:162–170PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Instituto Tecnológico de Costa RicaCentro de Investigación en BiotecnologíaCartagoCosta Rica

Personalised recommendations