Skip to main content

Trichoderma spp. in Consortium and Their Rhizospheric Interactions

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

Microbial consortium of efficient strains for biological control helps in improving microbial efficacy, reliability, and consistency under diverse soil and environmental conditions. Different genera in consortial formulation occupy varied niches in the root zone, thereby restricting competition among them. In this review we have discussed critically the need of consortial application of bioagents, their role in rhizosphere colonization, and disease suppression. Potential of consortial application of bioagents against fungal, bacterial, and nematodes can be utilized to fullest extent by selecting most potential strains and not by arbitrary use of consortia. It was also discussed here that out of all the consortial formulation applied globally, very few show synergistic effect in consortia. A numerical analysis model to assess synergism is discussed in this chapter. Thus, it is essential to select strains of microbes very carefully to develop efficient consortia to suppress crop diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeysinghe S (2009) Effect of combined use of Bacillus subtilis CA32 and Trichoderma harzianum RUOI on biological control of Rhizoctonia solani on Solanum melongena and Capsicum annuum. Plant Pathol J 8:9–16

    Article  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Anith KN, Faseela KM, Archana PA, Prathapan KD (2011) Compatibility of Piriformospora indica and Trichoderma harzianum as dual inoculants in black pepper (Piper nigrum L.). Symbiosis 55(1):11–17

    Article  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Bora T, Ozaktan H, Gore E, Aslan E (2004) Biological control of Fusarium oxysporum f. sp. melonis by wettable powder formulations of the two strains of Pseudomonas putida. J Phytopathol 152:471–475

    Article  Google Scholar 

  • Chittenden C, Singh T (2009) In vitro evaluation of combination of Trichoderma harzianum and chitosan for the control of sap stain fungi. Biol Control 50(3):262–266

    Article  Google Scholar 

  • Colla G, Rouphael Y, Di Mattia E, El-Nakhel C, Cardarelli M (2015) Co-inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. J Sci Food Agr 95(8):1706–1715

    Article  CAS  Google Scholar 

  • de Leon IP, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 14:3178–3200

    Article  PubMed Central  CAS  Google Scholar 

  • Dehariya K, Sheikh IA, Vyas D, Shukla A (2015) Trichoderma and arbuscular mycorrhizal fungi based biocontrol of Fusarium udum butler and their growth promotion effects on pigeon pea. J Agric Sci Technol 17:505–517

    Google Scholar 

  • Dubey SC, Tripathi A, Singh B (2013) Integrated management of Fusarium wilt by combined soil application and seed dressing formulations of Trichoderma species to increase grain yield of chickpea. Int J Pest Manage 59(1):47–54

    Article  Google Scholar 

  • Duffy BK, Simon A, Weller DM (1996) Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194

    Article  Google Scholar 

  • Elad Y, Kirshner B, Yehuda N, Sztejnberg A (1998) Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQ10. Biol Control 43(2):241–251

    Google Scholar 

  • Elliott M, Shamoun SF, Sumampong G, James D, Masri S, Varga A (2009) Evaluation of several commercial biocontrol products on European and North American populations of Phytophthora ramorum. Biocontrol Sci Tech 19:1007–1021

    Article  Google Scholar 

  • Elshahawy IE, El-Mohamedy RS (2019) Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. J Plant Pathol 101(3):597–608

    Article  Google Scholar 

  • Ezziyyani M, Requena ME, Egea-Gilabert C, Candela ME (2007) Biological control of Phytophthora root rot of pepper using Trichoderma harzianum and Streptomyces rochei in combination. J Phytopathol 155(6):342–349

    Article  CAS  Google Scholar 

  • Fernández E, Segarra G, Trillas MI (2014) Physiological effects of the induction of resistance by compost or Trichoderma asperellum strain T34 against Botrytis cinerea in tomato. Biol Control 78:77–85

    Article  Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Colla G, Rouphael Y (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield, and nutritional quality of leafy vegetables. Front Plant Sci 9:743. https://doi.org/10.3389/fpls.2018.00743

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan S, Kuppusamy RG, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachis hypogaea L.) using Rhizobium and Trichoderma harzianum (ITCC-4572). Turk J Agric For 31(2):103–108

    Google Scholar 

  • Goswami J, Pandey RK, Tewari JP, Goswami BK (2008) Management of root knot nematode on tomato through application of fungal antagonists, Acremonium strictum and Trichoderma harzianum. J Environ Sci Health B 43(3):237–240

    Article  CAS  PubMed  Google Scholar 

  • Gupta M, Dohroo NP, Gangta V, Shanmugam V (2010) Effect of microbial inoculants on rhizome disease and growth parameters of ginger. Indian Phytopathol 63(4):438–441

    Google Scholar 

  • Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649

    Article  PubMed  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Singh A, Singh S, Singh HB (2013) Microbial consortium-induced changes in oxidative stress markers in pea plants challenged with Sclerotinia sclerotiorum. J Plant Growth Regul 32(2):388–398

    Article  CAS  Google Scholar 

  • Jain A, Singh A, Chaudhary A, Singh S, Singh HB (2014) Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Res Int 64:275–282

    Article  CAS  PubMed  Google Scholar 

  • Jambhulkar PP, Sharma P, Raja M, Lakshman DK, Rokadia P, Jambhulkar N (2018) Assessing synergism of combined applications of Trichoderma harzianum and Pseudomonas fluorescens to control blast and bacterial leaf blight of rice. Eur J Plant Pathol 152(3):747–757

    Article  Google Scholar 

  • Jayaraj J, Ramabadran R (1999) Rhizobium-Trichoderma interaction in vitro and in vivo. Indian Phytopathol 52(2):190–192

    Google Scholar 

  • Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of Bacillus strains (IN937a and IN937b) against different pathogens. Biol Control 42:178–185

    Article  Google Scholar 

  • Kannan V, Sureendar R (2009) Synergistic effect of beneficial rhizosphere microflora in biocontrol and plant growth promotion. J Basic Microbiol 49:158–164

    Article  CAS  PubMed  Google Scholar 

  • Kumar SM, Chowdappa P, Krishna V (2015) Development of seed coating formulation using consortium of Bacillus subtilis OTPB1 and Trichoderma harzianum OTPB3 for plant growth promotion and induction of systemic resistance in field and horticultural crops. Indian Phytopathol 68(1):25–31

    Google Scholar 

  • Kumar M, Patel JS, Kumar G, Sarka A, Singh HB, Sarma BK (2017) Studies on Pseudomonas and Trichoderma-mediated root exudation pattern in chickpea against Fusarium oxysporum f. sp. ciceris. J Agric Sci Technol 19:969–978

    Google Scholar 

  • Latha P, Anand T, Prakasam V, Jonathan EI, Paramathma M, Samiyappan R (2011) Combining Pseudomonas, Bacillus and Trichoderma strains with organic amendments and micronutrient to enhance suppression of collar and root rot disease in physic nut. Appl Soil Ecol 49:215–223

    Article  Google Scholar 

  • Leon VC, Raja M, Pandian RTP, Kumar A, Sharma P (2018) Studies on opportunistic endophytism of Trichoderma species in rice. Indian J Exp Biol 56:121–128

    CAS  Google Scholar 

  • Lucas JA, Solano BR, Montes F, Ojeda J, Megias M, Gutierrez Manero FJ (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in southern Spain. Field Crops Res 114:404–410

    Article  Google Scholar 

  • Manjula K, Kishore GK, Girish AG, Singh SD (2004) Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol J 20(1):75–80

    Article  Google Scholar 

  • Marimuthu S, Ramamoorthy V, Samiyappan R, Subbian P (2013) Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. J Phytopathol 161:405–411

    Article  Google Scholar 

  • Martínez-Medina A, Roldán A, Pascual JA (2011) Interaction between arbuscular mycorrhizal fungi and Trichoderma harzianum under conventional and low input fertilization field condition in melon crops: growth response and Fusarium wilt biocontrol. Appl Soil Ecol 47(2):98–105

    Article  Google Scholar 

  • Mathivanan N, Prabavathy VR, Vijayanandraj VR (2005) Application of talc formulations of Pseudomonas fluorescens Migula and Trichoderma viride Pers. ex SF Gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J Phytopathol 153(11–12):697–701

    Article  Google Scholar 

  • Meyer SL, Roberts DP, Chitwood DJ, Carta LK, Lumsden R (2001) Application of Burkholderia cepacia and Trichoderma virens, alone and in combinations, against Meloidogyne incognita on bell pepper. Nematropica 31(1):75–86

    Google Scholar 

  • Mukherjee PK, Haware MP, Raghu K (1997) Induction and evaluation of benomyl-tolerant mutants of Trichoderma viride for biological control of Botrytis grey mould of chickpea. Indian Phytopathol 50(4):485–489

    Google Scholar 

  • Oyekanmi EO, Coyne DL, Fagade OE, Osonubi O (2007) Improving root-knot nematode management on two soybean genotypes through the application of Bradyrhizobium japonicum, Trichoderma pseudokoningii and Glomus mosseae in full factorial combinations. Crop Prot 26(7):1006–1012

    Article  Google Scholar 

  • Panebianco S, Vitale A, Polizzi G, Scala F, Cirvilleri G (2015) Enhanced control of postharvest citrus fruit decay by means of the combined use of compatible biocontrol agents. Biol Control 84:19–27

    Article  CAS  Google Scholar 

  • Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Radjacommare R, Venkatesan S, Samiyappan R (2010) Biological control of phytopathogenic fungi of vanilla through lytic action of Trichoderma species and Pseudomonas fluorescens. Arch Phytopathol Plant Protect 43(1):1–17

    Article  CAS  Google Scholar 

  • Raja M, Thava Prakasa Pandian R, Sharma M, Jambhulkar PP, Sharma P (2016) Study of induced systemic resistance in tomato against Fusarium oxysporum f. sp. Lycopersici causing wilt of tomato. Indian Phytopathol 69(4):539–542

    Google Scholar 

  • Rautela A, Shukla N, Ghatak A, Tewari AK, Kumar J (2018) Field evaluation of different copper sources in a consortium of “Copper-Chitosan-Trichoderma” for management of late blight disease of tomato. J Pharmacogn Phytochem 7(4):1260–1266

    CAS  Google Scholar 

  • Reddy PP, Rao MS, Nagesh M (1996) Management of citrus nematode, Tylenchulus semipenetrans, by integration of Trichoderma harzianum with oil cakes. Nematol Mediterr 24(2):265–267

    Google Scholar 

  • Reinke J (1872) Ueber die anatomischen Verhältnisseeiniger Arten von Gunnera L. Nachrichten von der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universitätzu Göttingen 9:100–108

    Google Scholar 

  • Ruano-Rosa D, Cazorla FM, Bonilla N, Martin-Perez R, De Vicente A, Lopez-Herrera CJ (2014) Biological control of avocado white root rot with combined applications of Trichoderma spp. and rhizobacteria. Eur J Plant Pathol 138(4):751–762

    Article  Google Scholar 

  • Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer arietinum L.). Appl Soil Ecol 28:139–146

    Article  Google Scholar 

  • Saeedizadeh A (2016) Trichoderma viride and Pseudomonas fluorescens CHA0 against Meloidogyne javanica in the rhizosphere of tomato plants. Hellenic Plant Protect J 9(1):28–34

    Article  Google Scholar 

  • Sahni S, Sarma BK, Singh DP, Singh HB, Singh KP (2008) Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot 27:369–376

    Article  CAS  Google Scholar 

  • Sajeesh PK, Bhardwaj NR, Balodi R, Kumar J (2016) Field evaluation of triple combination of copper, chitosan and Trichoderma for management of late blight disease of potato under hill condition. Adv Life Sci 5(7):2771–2778

    Google Scholar 

  • Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33

    Article  CAS  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam V, Gupta S, Dohroo NP (2013) Selection of compatible biocontrol strain mixture based on co cultivation for control of rhizome rot of ginger. Crop Prot 43:119–127

    Article  Google Scholar 

  • Sharma P, Dureja P (2004) Evaluation of T. harzianum and T. viride isolates at BCA pathogen crop interface. J Mycol Plant Pathol 34:47–55

    CAS  Google Scholar 

  • Sharma P, Sharma M, Raja M, Shanmugam V (2014) Status of Trichoderma research in India: a review. Indian Phytopathol 67(1):1–19

    Google Scholar 

  • Sharma P, Sharma M, Raja M, Singh DV, Srivastava M (2016) Use of Trichoderma spp. in biodegradation of Carbendazim. Indian J Agric Sci 86(7):59–62

    Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:1–23

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2009) Effect of plant growth promoting rhizobacteria, nematode parasitic fungi and root-nodule bacterium on root-knot nematodes Meloidogyne javanica and growth of chickpea. Biocont Sci Technol 19:511–521

    Article  Google Scholar 

  • Singh SP, Singh HB (2012) Effect of consortium of Trichoderma harzianum isolates on growth attributes and Sclerotinia sclerotiorum rot of brinjal. Veg Sci 39(2):144–148

    Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013a) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2013b) Rhizosphere microbes facilitate redox homeostasis in Cicer arietinum against biotic stress. Ann Appl Biol 163:33–46

    Article  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Sing HB (2014a) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169(5–6):353–360

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014b) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT-Food Sci Technol 56(2):390–397

    Article  CAS  Google Scholar 

  • Somani AK, Arora RK (2010) Field efficacy of Trichoderma viride, Bacillus subtilis and Bacillus cereus in consortium for control of Rhizoctonia solani causing black scurf disease of potato. Indian Phytopathol 63(1):23–25

    Google Scholar 

  • Srinath J, Bagyaraj DJ, Satyanarayana BN (2003) Enhanced growth and nutrition of micropropagated Ficus benjamina to Glomus mosseae co-inoculated with Trichoderma harzianum and Bacillus coagulans. World J Microbiol Biotechnol 19(1):69–72

    Article  CAS  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31

    Article  Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123

    Article  CAS  PubMed  Google Scholar 

  • Suryadi Y, Susilowati D, Riana E, Mubarik NR (2013) Management of rice blast disease (Pyricularia oryzae) using formulated bacterial consortium. Emir J Food Agric 25(5):349–357

    Article  Google Scholar 

  • Tanwar A, Aggarwal A, Kaushish S, Chauhan S (2013) Interactive effect of AM fungi with Trichoderma viride and Pseudomonas fluorescens on growth and yield of broccoli. Plant Prot Sci 49(3):137–145

    Article  CAS  Google Scholar 

  • Thakkar A, Saraf M (2015) Development of microbial consortia as a biocontrol agent for effective management of fungal diseases in Glycine max L. Arch Phytopathol Plant Prot 48(6):459–474

    Article  Google Scholar 

  • Thangavelu R, Gopi M (2015) Combined application of native Trichoderma isolates possessing multiple functions for the control of Fusarium wilt disease in banana cv. Grand Naine. Biocont Sci Technol 25(10):1147–1164

    Article  Google Scholar 

  • Thilagavathi R, Saravanakumar D, Ragupathi N, Samiyappan R (2007) A combination of biocontrol agents improves the management of dry root rot (Macrophomina phaseolina) in green gram. Phytopathol Mediterr 46(2):157–167

    CAS  Google Scholar 

  • Triveni S, Prasanna R, Kumar A, Bidyarani N, Singh R, Saxena AK (2015) Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop. Biocont Sci Technol 25(6):656–670

    Article  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Velmourougane K, Prasanna R, Singh S, Chawla G, Kumar A, Saxena AK (2017) Modulating rhizosphere colonisation, plant growth, soil nutrient availability and plant defense enzyme activity through Trichoderma viride-Azotobacter chroococcum biofilm inoculation in chickpea. Plant Soil 421(1–2):157–174

    Article  CAS  Google Scholar 

  • Wojtkowisk-Gebarowska E, Pietr SJ (2006) Colonization of roots and growth stimulation of cucumber by iprodione-resistant isolates of Trichoderma spp. applied alone and combined with fungicides. Phytopathol Pol 41:51–64

    Google Scholar 

  • Xu XM, Jeger MJ (2013) Combined use of two biocontrol agents with different biocontrol mechanisms most likely results in less than expected efficacy in controlling foliar pathogens under fluctuating conditions: a modeling study. Phytopathology 103:108–116

    Article  PubMed  Google Scholar 

  • Xu XM, Robinson JD, Jeger M, Jeffries P (2010a) Using combinations of biocontrol agents to control Botrytis cinerea on straw-berry leaves under fluctuating temperatures. Biocont Sci Technol 20:359–373

    Article  Google Scholar 

  • Xu XM, Salama N, Jeffries P, Jeger MJ (2010b) Numerical studies of biocontrol efficacies of foliar plant pathogens in relation to the characteristics of a biocontrol agent. Phytopathology 100:814–821

    Article  PubMed  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011a) Combined use of biocontrol agents to manage plant diseases in theory and practice. Phytopathology 101:1024–1031

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Jeffries P, Pautasso M, Jeger MJ (2011b) A numerical study of combined use of two biocontrol agents with different biocontrol mechanisms in controlling foliar pathogens. Phytopathology 101:1032–1044

    Article  PubMed  Google Scholar 

  • Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259

    Google Scholar 

  • Yobo KS, Laing MD, Hunter CH (2011) Effects of single and combined inoculations of selected Trichoderma and Bacillus isolates on growth of dry bean and biological control of Rhizoctonia solani damping-off. Afr J Biotechnol 10(44):8746–8756

    Article  CAS  Google Scholar 

  • Zaim S, Bekkar AA, Belabid L (2018) Efficacy of Bacillus subtilis and Trichoderma harzianum combination on chickpea Fusarium wilt caused by F. oxysporum f. sp. ciceris. Arch Phytopathol Plant Prot 51(3–4):217–226

    Article  Google Scholar 

  • Zhang F, Zhu Z, Yang X, Ran W, Shen Q (2013) Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl Soil Ecol 72:41–48

    Article  Google Scholar 

Download references

Acknowledgments

The corresponding author is highly thankful to DG, Indian Council of Agriculture Research (ICAR) and Agriculture Education Division, ICAR, New Delhi.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P., Jambhulkar, P.P., Raja, M., Sain, S.K., Javeria, S. (2020). Trichoderma spp. in Consortium and Their Rhizospheric Interactions. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_14

Download citation

Publish with us

Policies and ethics