Skip to main content

Deployment of Trichoderma for the Management of Tea Diseases

  • Chapter
  • First Online:
Book cover Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 908 Accesses

Abstract

Tea, Camellia sinensis (L.) O. Kuntze, is considered as one of the important plantation crops that has a great role in the GDP of the nation. Tea leaves contain more than 700 chemicals, among which flavonoids, amino acids, vitamins, caffeine and polysaccharides are beneficial to human health. They also improve the beneficial intestinal microflora, provide immunity against intestinal disorders and protect cell membranes from oxidative damage. The crop is infected by various diseases at different stages of the crop. Many of the diseases can be curbed through biological approaches, more particularly using Trichoderma spp. In this chapter we have discussed the works on potential use of Trichoderma spp. for the management of tea diseases, mode of action of Trichoderma against the pathogens causing tea diseases and the role of different biotic and abiotic factors on Trichoderma spp. leading to a successful result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altomare C, Norvell WA, Björkman T, Harman GC (1999) Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson RD, Baily BA, Taylor R, Sharon A, Avni A, Mattoo AK, Fuchs Y (1993) Fungal xylanase elicits ethylene biosynthesis and other defense responses in tobacco. In: Pech JC, Latche A, Balague C (eds) Cellular and molecular aspects of the plant hormone ethylene. Kluwer Academic, Dordrecht, Netherlands, pp 197–204

    Chapter  Google Scholar 

  • Anonymous (2012) Reporter, B S (17 October 2012). Assam cabinet’s nod to tea as ‘state drink’ of Assam. Business Standard India. Accessed 12 Feb 2019

    Google Scholar 

  • Anonymous (2013a) Archived copy. Archived from the original on 29 Oct 2013. Accessed 25 Feb 2013

    Google Scholar 

  • Anonymous (2013b) India to declare tea national drink in 2013. The Times of India. Archived from the original on 30 May 2013

    Google Scholar 

  • Anonymous (2013c) Tea to get hotter with national drink tag? - Times of India. The Times of India

    Google Scholar 

  • Anonymous (2014) Tea Board of India. Indian Tea culture. Govt. of India. Retrieved 6 Oct 2014

    Google Scholar 

  • Baby UI, Chandra Mouli B (1996) Biological antagonism of Trichoderma and Gliocladium spp. against certain primary root pathogens of tea. J Plantation Crops 24(Suppl):249–255

    Google Scholar 

  • Baby UI, Premkumar R, Ajay D, Sanjay R, Sasidhar R (2004) Chemical and biological control of red root disease. Newsl UPASI Tea Res Foundation 14(2):1–2

    Google Scholar 

  • Baker KF, Snyder WC (1965) Ecology of soil-borne plant pathogens: prelude to biological control, vol 100. University of California Press, Berkeley, CA, p 224

    Google Scholar 

  • Balasuriya A (1998) Report of the plant pathology division. Annual Report of Tea Research Institute, Sri Lanka. pp 88–89

    Google Scholar 

  • Balasuriya A (2001) Report of the plant pathology division. Annual Report of Tea Research Institute, Sri Lanka. p 128

    Google Scholar 

  • Balasuriya A (2005) Report of the plant pathology division, Annual Report of Tea Research Institute, Sri Lanka. p 177

    Google Scholar 

  • Bhagat RM, Baruah DR, Safique S (2010) Climate and tea, Camellia sinensis (L) O. Kuntze production with special reference to north east India: a review. J Environ Res Dev 4(4):1017–1028

    CAS  Google Scholar 

  • Bissett J (1991a) A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372

    Article  Google Scholar 

  • Bissett J (1991b) A revision of the genud Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417

    Article  Google Scholar 

  • Bues R, Bussieres P, Dadomo M, Dumas Y, Garcia-Pomar MI, Lyannaz JP (2004) Assessing the environmental impacts of pesticides used on processing tomato crops. Agric Eco Environ 102:155–162

    Article  CAS  Google Scholar 

  • Caldwell R (1958) Fate of spores of Trichoderma viride Pers. Ex Fr. introduced into soil. Nature 181:1144–1145

    Article  Google Scholar 

  • Carr MKV (1972) The climatic requirements of the tea plant: a review. Exp Agric 8:1–14

    Article  Google Scholar 

  • Carreiro MM, Koske RE (1992) Effect of temperature on decomposition and development of microfungal communities in leaf litter microcosms. Can J Bot 70:2177–2183

    Article  Google Scholar 

  • Chakrabarty U, Chakrabarty BN, Chakrabarty AP, Sunar K, Dey PL (2013) Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Ind J Biotechnol 12:20–31

    Google Scholar 

  • Chet I, Baker R (1980) Induction of suppressiveness to Rhizoctonia solani in soil. Phytopathology 70:994–998

    Article  Google Scholar 

  • Chen SK, Edwards CA, Subler S (2001) A microcosm approach for evaluating the effects of the fungicides benomyl and captan on soil ecological processes and plant growth. Appl Soil Ecol 18:69–82

    Article  CAS  Google Scholar 

  • Chet I (1990) Biological control of soilborne pathogens with fungal antagonists in combination with soil treatment. In: Hornby D, Cook RJ, Henis Y, Ko WH, Rovira AD, Schippers B, Scott PR (eds) Biological control of soilborne pathogens. CAB Publishing House, New York, pp 15–25

    Google Scholar 

  • Chet I, Baker R (1981) Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathology 71:286–290

    Article  Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microbiol Ecol 7:29–38

    Article  CAS  Google Scholar 

  • Clarkson JP, Mead A, Payne T, Whipps JM (2004) Effect of environmental factors and Sclerotium cepivorum isolate on sclerotial degradation and biological control of white rot by Trichoderma. Plant Pathol 53:353–362

    Article  Google Scholar 

  • Danielson RM, Davey CB (1973) Non nutritional factors affecting the growth of Trichoderma in culture. Soil Biol Biochem 5:495–504

    Article  CAS  Google Scholar 

  • Davet P (1979) Technique pour l’analyse des populations de Trichoderma et de Gliocladium virens dans le sol. Ann Phytopathol 11:524–533

    Google Scholar 

  • De Meyer G, Bigirimana J, Elad Y, Hofte M (1998) Induced systemic resistance in Trichoderma harzianum biocontrol of Botrytis cinerea. Eur J Plant Pathol 104:279–286

    Article  Google Scholar 

  • Dhaliwal GS, Koul O (2010) Quest for pest management: from green revolution to gene revolution. Kalyani Publishers, New Delhi

    Google Scholar 

  • Dileep Kumar BS, Mishra AK, Dutta S (2005) Role of plant growth promoting rhizobacteria in suppression of root diseases of tea. International Symposium on Integrated Management of Fungal Diseases. Section-II. p 23

    Google Scholar 

  • Dix N, Webster J (1995) Fungal ecology. Chapman and Hall, London, p 549

    Book  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic, New York

    Google Scholar 

  • Dutta P, Kaushik H, Puzari KC, Bhuyan RP (2016) Ecofriendly management of tea diseases in current scenario of climate change. In: Dynamics in crop protection and climate change. Publ. Studera Press, New Delhi, pp 325–340

    Google Scholar 

  • Dutta P, Kakati N, Das A, Kaushik H, Boruah S, Bhowmick P, Kaman P, Bhuyan RP, Hazarika GN (2017) Trichoderma pseudokoningii showed compatibility with certain commonly used inorganic pesticides, fertilizer and sticker cum spreaders. Int J Curr Microbiol App Sci 6(2):140–146

    Article  CAS  Google Scholar 

  • Eastburn DM, Butler EE (1988) Microhabitat characterization of Trichoderma harzianum in natural soil: evaluation of factors affecting population density. Soil Biol Biochem 20:541–545

    Article  Google Scholar 

  • Eastburn DM, Butler EE (1991) Effects of soil moisture and temperature on the saprophytic ability of Trichoderma harzianum. Mycologia 83:257–263

    Article  Google Scholar 

  • Eden T (1976) Tea, 93rd edn. Longman Group, London, p 236

    Google Scholar 

  • Elad Y, Kapat A (1999) The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur J Plant Pathol 105:177–189

    Article  CAS  Google Scholar 

  • Elad Y, Chet I, Henis Y (1983) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii. Scanning electron microscopy and fluorescence microscopy. Phytopathology 73:85–88

    Article  Google Scholar 

  • Elad Y, Chet I, Baker R (1987) Increased growth response of plants induced by rhizobacteria antagonistic to soilborne pathogenic fungi. Plant Soil 98:325–330

    Article  Google Scholar 

  • Elad Y, David DR, Levi T, Kapat A, Kirshner B, Guvrin E, Levine A (1999) Trichoderma harzianum T-39 mechanisms of biocontrol of foliar pathogens. In: Lyr H (ed) Modern fungicides and antifungal compounds II. Intercept Ltd., Andover, Hampshire

    Google Scholar 

  • FAO (1999) FAO yearbook of production Vol 52, 1998. FAO Statistic Series No. 148. Food and Agriculture Organization of the United Nations, Rome, p 170

    Google Scholar 

  • Gams W, Bissett J (1998) Morphology and identification of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 3–31

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Ghisalberti EL, Narbey MJ, Dewan MM, Sivasithaparam K (1990) Variability among strains of Trichoderma harzianum in their ability to reduce take all and to produce pyrones. Plant Soil 121(20):281–291

    Google Scholar 

  • Gochenaur SE, Backus MP (1967) Mycoecology of willow and cotton-wood lowland communities in southern Wisconsin. II. Soil microfungi in the sandbar willow stands. Mycologia 59:893–901

    Article  Google Scholar 

  • Gracia-Garza JA, Reeleder RD, Paulitz TC (1997) Degradation of sclerotia of Sclerotinia sclerotiorum by fungus gnats (Bradysia coprophila) and the biocontrol fungi Trichoderma spp. Soil Biol Biochem 29:123–129

    Article  CAS  Google Scholar 

  • Hagn A, Geue H, Pritsch K, Schloter M (2002) Assessment of fungal diversity and community structure in agricultural used soils. Research Signpost, Kerala, India

    Google Scholar 

  • Hagn A, Pritsch K, Schloter M, Munch JC (2003) Fungal diversity in agricultural soil under different farming management systems, with special reference to biocontrol strains of Trichoderma spp. Biol Fertil Soils 38:236–244

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1996a) Molecular mechanisms of lytic enzymes involved in the biocontrol activity of Trichoderma harzianum. Microbiology 142:2321–2331

    Article  CAS  Google Scholar 

  • Haran S, Schickler H, Oppenheim A, Chet I (1996b) Differential expression of Trichoderma harzianum chitinases during mycoparasitism. Phytopathology 86:980–985

    Article  CAS  Google Scholar 

  • Harman GE (2000) Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis 84:377–393

    Article  CAS  PubMed  Google Scholar 

  • Hazarika DK, Phookan A (2003) Combination of Glomus fasciculatum with Pseudomonas fluorescens and Trichoderma harzianum: effect on biocontrol potential and growth promotion in tea seedling. Sixth International Workshop on PGPR, IISR Calicut. pp 289–294

    Google Scholar 

  • Hazarika DK, Phookan AK, Saikia GK, Borthakur BK, Sarma D (2000) Management of charcoal stump rot of tea with biocontrol agents. J Plant Crop 28(2):149–153

    Google Scholar 

  • Henis Y, Papavizas GC (1983) Factors affecting germinability and susceptibility to attack of sclerotia of Sclerotium rolfsii by Trichoderma harzianum in field soil. Phytopathology 73:1469–1474

    Article  Google Scholar 

  • Hewitt HG (1998) Fungicides in crop protection, 1st edn. C.A.B International, Wallingford, Oxon

    Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 131–152

    Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Glioladium, vol 2. Taylor and Francis, London, pp 173–184

    Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Howell CR, Stipanovic RD, Lumsden RD (1993) Antibiotic production by strains of Gliocladium virens and its relation to the biocontrol of cotton seedling diseases. Biocontrol Sci Tech 3:435–441

    Article  Google Scholar 

  • Jeyarajan R, Nakeeran S (2000) Exploitation of microorganisms and virus as biocontrol agents for crop disease management. In: Upadhyay RK et al (eds) Biocontrol potential and its exploitation in sustainable agriculture. Springer Science + Business Media, New York, pp 95–116

    Chapter  Google Scholar 

  • Kay SJ, Stewart A (1994) Evaluation of fungal antagonists for control of onion white rot in soil box trials. Plant Pathol 43:371–377

    Article  Google Scholar 

  • Killham K (1994) Soil ecology, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kleifeld O, Chet I (1992) Trichoderma harzianum – interaction with plants and effect on growth response. Plant Soil 144:267–272

    Article  Google Scholar 

  • Klein D, Eveleigh E (1998) Ecology of Trichoderma. In: Kubicek CP, Harman GE (eds) Trichoderma and Gliocladium. Taylor & Francis, London, pp 57–69

    Google Scholar 

  • Knudsen IMB, Hockenhull J, Jensen DF, Gerhardson B, Hokeberg M, Tahvonen R, Teperi E, Sundheim L, Henriksen B (1997) Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol 103:775–784

    Article  Google Scholar 

  • Lewis JA, Lumsden RD (2001) Biocontrol of damping-off of greenhouse-grown crops caused by Rhizoctonia solani with a formulation of Trichoderma spp. Crop Prot 20:49–56

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1984) A new approach to stimulate population proliferation of Trichoderma species and other potential biocontrol fungi introduced into natural soils. Phytopathology 74:1240–1244

    Article  Google Scholar 

  • Lockwood JL (1977) Fungistasis in soils. Biol Rev 52:1–43

    Article  CAS  Google Scholar 

  • Lorito M, Farkas V, Rebuffat S, Bodo B, Kubicek CP (1996) Cell wall synthesis is a major target of mycoparasitic antagonism by Trichoderma harzianum. J Bacteriol 178:6382–6385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui S, Baker R (1980) Mechanism of biological control in soil suppressive to Rhizoctonia solani. Phytopathology 70:404–412

    Article  Google Scholar 

  • Lumsden RD, Locke JC, Adkins ST, Walter JF, Ridout C (1992) Isolation and localization of the antibiotic gliotoxin produced by Gliocladium virens from alginate prill in soil and soilless media. Phytopathology 82:230–235

    Article  CAS  Google Scholar 

  • McLean KL, Stewart A (2000) Application strategies for control of onion white rot by fungal antagonists. N Z J Crop Hort Sci 28:115–122

    Article  Google Scholar 

  • Mcspadden Gardner BB, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. https://doi.org/10.1049/PHP-2002-0510-01-RV

  • Melero-Vara JM, Prados-Ligero AM, Basallote-Ureba MJ (2000) Comparison of physical, chemical and biological methods of controlling garlic white rot. Eur J Plant Pathol 106:581–588

    Article  CAS  Google Scholar 

  • Ousley MA, Lynch JM, Whipps JM (1994) Potential of Trichoderma spp. as consistent plant growth stimulators. Biol Fertil Soils 17:85–90

    Article  Google Scholar 

  • Papavizas GC (1981) Survival of Trichoderma harzianum in soil and in pea and bean rhizosphere. Phytopathology 71:121–125

    Google Scholar 

  • Papavizas GC (1982) Survival of Trichoderma harzianum in soil and in pea and bean rhizosphere. Phytopathology 72:121–125

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Papavizas GC, Dunn MT, Lewis JA, Beagle-Ristaino J (1984) Liquid fermentation technology for experimental production of biocontrol fungi. Phytopathology 74:1171–1175

    Article  CAS  Google Scholar 

  • Parkinson D, Taylor GS, Pearson R (1963) Studies on fungi in the root region. I. The development of fungi on young roots. Plant Soil 19:322–349

    Article  Google Scholar 

  • Paulitz TC (2000) Population dynamics of biocontrol agents and pathogens in soils and rhizospheres. Eur J Plant Pathol 106:401–413

    Article  Google Scholar 

  • Persoon CH (1794) Disposition methodica fungorum. Römer’s neues. Magazin Botanische 1:81–128

    Google Scholar 

  • Pittendrigh BR, Gaffney PJ (2001) Pesticide resistance: can we make it a renewable resource? J Theor Biol 211:365–375

    Article  CAS  PubMed  Google Scholar 

  • Ponmurugan P, Baby UI (2003) In vitro interaction of fungal antagonists with Phomopsis theae, the causal agent of collar canker disease in tea. Indian J Microbiol 43:41–44

    Google Scholar 

  • Ponmurugan P, Baby UI, Premkuma R, Radhakrishnan B (2002) Integrated control of Phomopsis Canker disease of tea. Proceedings of Placrosym XV. pp 599–602

    Google Scholar 

  • Premkumar R, Baby UI (2005) Recommendations on the control of root and stem diseases of tea. Handbook of Tea Culture. Section 15/16

    Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Purseglove JW (1968) Tropical crops: dicotyledons 2. Longmans, London, pp 599–612

    Google Scholar 

  • Rifai MA (1969) A revision of the genus Trichoderma. Mycol Pap 116:1–56

    Google Scholar 

  • Roiger DJ, Jeffer SN, Caldwell RW (1991) Occurrence of Trichoderma species in apple orchard and woodland soil. Soil Biol Biochem 23:353–359

    Article  Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematic of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  • Sarkar A, Das RC, Rashid MH, Ali M, Islam MS, Asaed T, Wang Q (2015) Biocontrol potentiality of isolates of Trichoderma spp. against Pestalozzia theae Saw. in tea. Acta Phytopathol Entomol Hungarica 50(2):179–186

    Article  Google Scholar 

  • Schirmbock M, Lorito M, Wang Hayes YL (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonism action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60(12):4364–4370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeman MW, Webber JF, Dickinson DJ (1996) The effect of diffusible metabolites of Trichoderma harzianum on in vitro interactions between basidiomycete isolates at two different temperature regimes. Mycol Res 100:1454–1458

    Article  CAS  Google Scholar 

  • Schroth MN, Hancock JG (1982) Disease-suppressive and root colonizing bacteria. Science 216:1376–1381

    Article  CAS  PubMed  Google Scholar 

  • Sivasithamparam K, Ghisalbert EL (1998) Secondary metabolism in Trichoderma and Glioladium. In: Kubicek CP, Harman GE (eds) Trichoderma and Glioladium, vol 1. Taylor and Francis, London, pp 139–191

    Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. N Z J Crop Hort Sci 31:281–291

    Article  Google Scholar 

  • Storey GK, Gardner WA (1987) Vertical movement of commercially formulated conidia of the entomogenous fungus, Beauveraibassiana in four Georgia soil types. Environ Entomol 16:17–181

    Article  Google Scholar 

  • Thoudam R, Dutta B (2012) Control of black rot disease of tea (Camellia sinensis I (L.) O Kuntze) with the mycoflora isolated from tea environment and phyllosphere. J Mycopathol Res 50:205–210

    Google Scholar 

  • Tronsmo A, Dennis C (1978) Effect of temperature on antagonistic properties of Trichoderma species. Trans Br Mycol Soc 71:469–474

    Article  Google Scholar 

  • Wardle A, Parkinson D, Waller JE (1993) Interspecific competitive interaction between pairs of fungal species in natural substrates. Ecologia 94:165–172

    CAS  Google Scholar 

  • Weindling R (1932) Trichoderma lignorumas a parasite of other fungi. Phytopathology 22:837–845

    Google Scholar 

  • Weindling R (1941) Experimental consideration of the mold toxins of Gliocladium and Trichoderma. Phytopathology 31:991–1003

    CAS  Google Scholar 

  • Wilcox WF, Harman GE, Di Pietro A (1992) Effect of gliotoxin on growth, sporulation, and zoospores motility of seven Phytophthora spp in vitro. Phytopathology 82:1121

    Google Scholar 

  • Windham MT, Elad Y, Baker R (1986) A mechanism for increased plant growth induced by Trichoderma spp. Phytopathology 76(5):518–521

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dutta, P., Bhuyan, R.P., Sharma, P. (2020). Deployment of Trichoderma for the Management of Tea Diseases. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_12

Download citation

Publish with us

Policies and ethics