Skip to main content
Book cover

Trichoderma pp 205–220Cite as

Potential of Trichoderma spp. for Pest Management and Plant Growth Promotion in NE India

  • Chapter
  • First Online:

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

The growing concern about the health and environmental hazards of chemical pesticides worldwide and burgeoning interest on organic or chemical residue-free food have driven plant protection research towards developing a bio-intensive and ecofriendly strategy of pest management. At this juncture, exploring plant-beneficial microbes including the fungal genus Trichoderma is considered as the most suitable tactic. Trichoderma is known as the most commonly used biocontrol agent, as Trichoderma based biopesticides occupy a significant position in the world biopesticide market. The plant-beneficial properties of Trichoderma have widened its horizon beyond plant disease management, and the genus is explored for biotic and abiotic stress management as well. Trichoderma has shown its potential in plant growth promotion and activating defence mechanism in plants. In the recent decade, the genus has caught researchers’ attention in insect pest management as well as bioremediation of organic and inorganic pollutants. This book chapter summarizes the comprehensive information on research findings on Trichoderma including plant disease and insect pest management, plant growth promotion, Trichoderma-mediated host defence response, role in organic agriculture in NE India and discusses the future line of research works.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrios G (2005) Plant pathology, 5th edn. Elsevier, London

    Google Scholar 

  • Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt inducing Fusarium oxysporum. New Phytol 184:529–544

    Article  CAS  PubMed  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitink HAJ (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum. Phytopathology 97:429–437

    Article  CAS  PubMed  Google Scholar 

  • Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23

    Article  Google Scholar 

  • Anonymous (1966). https://www.ipcc-nggip.iges.or.jp/public/gl/guidelin/ch4ref5.pdf

  • Anonymous (2017). http://agriexchange.apeda.gov.in/news/newssearch

  • Anwar W, Haider M, Shahid A, Mushtaq Rehman H, Hameed ZMU, Javed S (2016) First record of Trichoderma longibrachiatum as entomopathogenic fungi against Bemisia tabaci in Pakistan. Pak J Phytopathol 28(2):287–294

    Google Scholar 

  • Babychan M, Simon S (2017) Efficacy of Trichoderma spp. against Fusarium oxysporum f. sp. lycopersici (FOL) infecting pre- and post-seedling of tomato. J Pharmacogn Phytochem 6:616–619

    CAS  Google Scholar 

  • Bahar MM, Mallavarapu M, Naidu R (2012) Arsenic bioremediation potential of a new Arsenite-oxidizing bacterium Stenotrophomonas sp MM-7 isolated from soil. Biodegradation 23(6):803–812

    Article  CAS  PubMed  Google Scholar 

  • Binod P, Sukumaran RK, Shirke SV, Rajput JC, Pandey A (2007) Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. J Appl Microbiol 103:1845–1852

    Article  CAS  PubMed  Google Scholar 

  • Bjorkman T, Blanchard LM, Harman GE (1998) Growth enhancement of shrunken-2 sweet corn when colonized with Trichoderma harzianum 1295-22 effect of environmental stress. J Am Soc Hort Sci 123:35–40

    Article  Google Scholar 

  • Bora M (2007) An integration of bioagents and fungicides for the management of white mold of French bean. MSc (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Bora LC (2008) Use of Pseudomonas fluorescens as biopesticide for management of wilt disease caused by Ralstonia solanacearum. Trop Agric 85(2):57–61

    Google Scholar 

  • Bora M (2017) Aggrieved Trichoderma harzianum in management of Sclerotinia rot of carrot in organically amended soil. PhD (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Bora LC, Bhagabati, KN (1999) Quantitative aspects of assessing virulence of Xanthomonas campestris pv. citri (Hasse) Dye, the incitant of citrus canker in Assam. Intl Symp Citriculture, National Res Centre for Citrus, Nagpur, Maharashtra

    Google Scholar 

  • Bora LC, Bora P (2008a) Biological control strategies for management of bacterial wilt of brinjal (Solanum melongena). J Mycol Plant Pathol 38(3):512–517

    Google Scholar 

  • Bora LC, Bora P (2008b) Mass culture of saprophytic antagonists and their application for management of bacterial wilt and rhizome rot of ginger. J Mycol Plant Pathol 38(1):245–251

    Google Scholar 

  • Bora LC, Deka SN (2007) Wilt disease suppression and yield enhancement in tomato (Lycopersicon esculentum) by application of Pseudomonas fluorescens based bio pesticide (Biofor-Pf) in Assam. Indian J Agric Sci 77(8):490–494

    Google Scholar 

  • Bora LC, Sarkar, R, Kataky, L (2013) Genomic characterization of microbial antagonists, their interactive effects and utility in management of bacterial wilt of Bhut Jolokia (Capsicum chinense Jacq). In Acta Phytopathologica Sinica, 10th International Congress of Plant Pathology ICPP 2013. 20–30 Aug 2013, Beijing, China

    Google Scholar 

  • Bora LC, Kataki L, Talukdar K, Nath BC, Sarkar R (2015) Molecular characterizations of microbial antagonists and development of bioformulations for management of bacterial wilt of Naga chilli (Capsicum chinens Jacq.) in Assam. J Exp Biol Agric Sci 3(2):109–122

    CAS  Google Scholar 

  • Bora LC, Kataki, L, Talukdar, K (2016a) Yield enhancement and Rhizoctonia root disease management of chilli (Capsicum frutescens) using microbial consortia in Assam. In National seminar on Integrated Development of Horticulture in Sub Tropical & Hill Region. pp 117–127

    Google Scholar 

  • Bora LC, Kataki L, Talukdar K, Khan P, Dutta J (2016b) Yield enhancement and bacterial wilt suppression in Bhut Jolokia (Capsicum assamicum) using consortia of microbial antagonists. Biopest Int 12(2):165

    Google Scholar 

  • Boruah S (2017) Development of next-gen nano-bioformulation of Trichoderma for seed treatment of vegetable crops. PhD (Agri) thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Mohan Kumar SP, Lakshmi MJ, Upretti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117

    Article  Google Scholar 

  • Cuervo-Parra JA, Ramirez SM, Sanchez LV, Ramirez LM (2011) Antagonistic effect of Trichoderma harzianum VLS291on phytopathogenic fungi isolated from cocoa (Theobroma cacao). Afr J Biotechnol 10(52):10657–10663

    Article  CAS  Google Scholar 

  • Das BC (1992) Antagonism of Aspergillus terreus on Rhizoctonia solani and its effect on the incidence of sheath blight of rice. PhD (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Deb R (2017) PGPM formulation mediated biochemical changes and defense response of tea against major diseases and pests. MSc (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Deb R, Bora LC, Das P (2017) Microbial bioformulations for suppression of major insect pests and diseases and enhanced biochemical properties of tea crop. Intl J Curr Microbiol Appl Sci 6(6):1872–1879

    Article  CAS  Google Scholar 

  • Deuri D (2013) Bio-intensive approach for management of bacterial wilt of ginger (Zinziber officinale). MSc (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Dlugokencky EJ, Walter BP, Masarie KA, Lang PM, Kasischke ES (2001) Measurements of an anomalous global methane increase during 1998. Geophys Res Lett 28:499–502. https://doi.org/10.1029/2000GL012119

    Article  CAS  Google Scholar 

  • Dordas C (2007) Nitrogen fertilization influences yield, physiology and N use efficiency in flax (Linum usitαtissimum L.). In 15th N Workshop, 28–30 May 2007, Lleida, Spain

    Google Scholar 

  • Dubey SC, Suresh M (2006) Randomly amplified polymorphic DNA markers for Trichoderma species and antagonism against Fusarium oxysporum fsp Ciceris causing chickpea wilt. J Phytopathol 154:663–669

    Article  CAS  Google Scholar 

  • Dutta R (2015) Eco-friendly management of Alternaria leaf blight of Mandukaparni (Centella asiatica L). MSc(Agri) thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Dutta J, Bora LC, Singh S (2016) Suppression of Colletotrichum musae associated with micro-propagated banana plantlets using microbial bio agents. NE zonal meeting, 2016 Indian Phytopathological Society. p 90

    Google Scholar 

  • Friedl MA, Druzhinina IS (2012) Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other’s development. Microbiology 158(1):60–83

    Article  CAS  Google Scholar 

  • Ghosh SK, Pal S (2016) Entomopathogenic potential of Trichoderma longibrachiatum and its comparative evaluation with malathion against the insect pest Leucinodes orbonalis. Environ Monit Asses 188(1):37

    Article  CAS  Google Scholar 

  • Gogoi M, Sarmah DK, Bora LC, Barua IC (2017) Management of root rot disease of patchouli caused Fusarium solani (Mart) Sacc through fungicide, bioagent and oilcake in field. Int J Curr Microbiol App Sci 6(9):3385–3397

    Article  CAS  Google Scholar 

  • Harish R, Kumar SN, Chauhan JB (2013) Biodegradation of organophosphate pesticide by soil fungi. Adv BioTech 12(9):2319–6750

    Google Scholar 

  • Harman GE (2006) Overview of mechanism and uses of Trichoderma spp. Phytopathology 96:190–194

    Google Scholar 

  • Harman GE, Shoresh M (2007) The mechanism and application of symbiotic opportunistic plant symbionts. In: Vurro M, Gressel J (eds) Novel biotechnologies for biocontrol agent enhancement and management. NATO security through science series. Springer, Dordrecht, pp 131–155

    Chapter  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2(1):43–56

    Article  CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (1999) Selective isolation from soil and separation in vitro of P and Q strains of Trichoderma virens with differential media. Mycologia 91:930–934

    Article  Google Scholar 

  • Howell CR (2002) Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 92:177–180

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2003) Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant Dis 87:4–10

    Article  CAS  PubMed  Google Scholar 

  • Huber DM (1989) Introduction. In: Engelhard AW (ed) Soil-borne plant pathogens: management of diseases with macro and microelements. APS Press, St Paul, MN, pp 169–206

    Google Scholar 

  • Jassim HK, Foster H, Foster HA, Fairhurst CP (1990) Biological control of Dutch elm disease: larvicidal activity of Trichoderma harzianum T. polysporum and Scytalidium lignicola in Scolytus scolytus and S. multistriatus reared in artificial culture. Ann Appl Biol 117:187–196

    Article  Google Scholar 

  • Kamala T, Devi SI (2012) Biocontrol properties of indigenous Trichoderma isolates from North-East India against Fusarium oxysporum and Rhizoctonia solani. Afr J Biotechnol 11(34):8491–8499

    Article  CAS  Google Scholar 

  • Katayama A, Matsumara F (1993) Degradation of organochlorine pesticides, particularly endosulfan, by Trichoderma harzianum. Environ Toxicol Chem 12(6):1059–1065

    Article  CAS  Google Scholar 

  • Khaleil M, El-Mougith A, Hashem H, Lokma N (2016) Biocontrol potential of entomopathogenic fungus, Trichoderma hamatum against the cotton aphid, Aphis Gossypii. J Environ Sci Toxicol Food Technol 10(5):11–20

    Google Scholar 

  • Khan P, Borah PK, Bora LC (2016) Fusarium oxysporum f.sp. lactucae (FoL) a potential threat to hydroponically grown lettuce (Lactuca sativa) and its management using microbial consortia. NE zonal meeting, 2016, Indian Phytopathological Society. p 35

    Google Scholar 

  • Khan P, Bora LC, Bora P, Talukdar K, Kataky L (2018) Efficacy of microbial consortia against bacterial wilt caused by Ralstonia solanacearum in hydroponically grown lettuce plant. Int J Curr Microbiol App Sci 7(6):3046–3055

    Article  CAS  Google Scholar 

  • Kithan C, Daiho L (2014) In vitro evaluation of botanicals, bio-agents and fungicides against leaf blight of Etlingera linguiformis caused by Curvularia lunata var Aeria. J Plant Pathol Microbiol 5:3

    Article  CAS  Google Scholar 

  • Kumar V, Shahid M, Singh A, Srivastava M, Mishra A, Srivastava YK, Pandey S, Sharma A (2014) Effect of biopriming with biocontrol agents Trichoderma harzianum (Th Azad) and Trichoderma viride on chickpea genotype (Radhey). J Plant Pathol Microbiol 5:1

    CAS  Google Scholar 

  • Lalfakawma C, Nath BC, Bora LC, Srivastava S, Singh JP (2014) Integrated disease management of Zingiber officinale Rosc rhizome rot. Bioscan 9(1):265–269

    Google Scholar 

  • Lalitha P, Srujana, Arunalakshmi K (2012) Effect of Trichoderma viride on germination of mustard and survival of mustard seedlings. Int J Life Sci Biotechnol Pharm Res 1(1):137–140

    Google Scholar 

  • Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ’Omics to the field. Annu Rev Phytopathol 48:395–341

    Article  CAS  PubMed  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  CAS  PubMed  Google Scholar 

  • Matsouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  CAS  Google Scholar 

  • Mech S (2004) UV-radiated mutant of Trichoderma harzianum Rifai and its carrier-based formulation for management of white mold of French bean. MSc (Agri) Thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Mishra RC, Singh R, Singh HB, Dixit A (2000) In situ efficacy of Trichoderma harzianum as mycoparasite on Sclerotium rolfsi and Rhizoctonia solani. TropAgric 77(3):205–206

    Google Scholar 

  • Mukherjee PK, Raghu K (1997) Trichoderma sp. as a microbial suppressive agent of Sclerotium rolfsii on vegetables. World J Microbiol Biotechnol 13(5):497–499

    Article  Google Scholar 

  • Mukherjee PK, Horwitz BA, Herrera EA, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    Article  CAS  PubMed  Google Scholar 

  • Naglot A, Goswami S, Rahman I, Shrimali DD, Yadav K, Gupta VK, Rabha AJ, Gogoi HK, Veer V (2015) Antagonistic potential of native Trichoderma viride strain against potent tea fungal pathogens in north East India. Plant Pathol J 31(3):278–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath BC, Bora LC, Kataki L, Talukdar K, Sharma P, Dutta J, Khan P (2016) Plant growth promoting microbes, their compatibility analysis and utility in biointensive management of bacterial wilt of tomato. Int J Curr Microbiol App Sci 5(6):1007–1016

    Article  CAS  Google Scholar 

  • Persoon CH (1794) Disposita methodical fungorum. Römers Neues Mag Bot 1:81–128

    Google Scholar 

  • Prakash V, Saikia AJ (2015) Production and multiplication of native compost fungal activator by using different substrates and its influence on growth and development of Capsicum chinensis Jacq “Bhut Jolokia”. Biotechnol Res Int 2015:1. https://doi.org/10.1155/2015/481363

    Article  Google Scholar 

  • Roy AK (1977) Parasitic activity of Trichoderma viride on the sheath blight fungus of rice (Cortium sasakii). J Plant Dis Prot 84:675–683

    Google Scholar 

  • Saba H, Vibhash D, Manisha M, Prashant KS, Farhanm H, Tauseef A (2012) Trichoderma-a promising plant growth stimulator and biocontrol agent. Mycosphere 3(4):524–531

    Article  Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935

    Article  Google Scholar 

  • Sarkar R (2015) Genomic analysis of few bioactive microorganisims, their interactive effects and utility as consortia in management of bacterial wilt of Bhoot Jalakia (Capsicum chinense Jacq). MSc (Agri) thesis, Assam Agric University, Jorhat, Assam

    Google Scholar 

  • Shanmugam V, Gupta S, Dohroo NP (2012) Selection of compatible biocontrol strain mixture based on co cultivation for control of rhizome rot of ginger. Crop Prot 43:119–127

    Article  Google Scholar 

  • Sharma P, Singh L, Adlakha D (2001) Antagonistic potential of Trichoderma and Aspergillus species on Sclerotinia sclerotiorum (Lib) de Barry causing rots in cabbage and cauliflower. Pestic Info 2:41–44

    Google Scholar 

  • Sharma P, Patel AN, Saini MK, Deep S (2012) Field demonstration of Trichoderma harzianum as a plant growth promoter in wheat (Triticum aestivum L). J Agric Sci 4(8):65–73

    Google Scholar 

  • Singh HB, Singh A, Nautiyal CS (2002) Commercialization of biocontrol agents: problems and prospects. In: Rao GP et al (eds) Frontiers of fungal diversity in Indian subcontinent. International Book Distribution Company, Lucknow, India, pp 847–861

    Google Scholar 

  • Singh S, Dureja P, Tanwar RS (2005) Production and antifungal activity of secondary metabolites of Trichoderma virens. Pestic Res J 17:26–29

    CAS  Google Scholar 

  • Singh V, Lal RJ, Awasthi SK, Verma MR (2009) Managing red rot of sugarcane by Trichoderma harzianum. Indian Sugar 59(4):25–30

    Google Scholar 

  • Singh A, Sarma BK, Singh HB, Upadhyay RS (2014) Trichoderma: a silent worker of plant rhizosphere. In: Gupta VG et al (eds) Biotechnology and biology of Trichoderma. Elsevier, Amsterdam, pp 543–549

    Google Scholar 

  • Srivastava R, Khalid A, Singh U, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, Fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f.sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31

    Article  Google Scholar 

  • Steyaert JM, Ridgway HJ, Elad Y, Stewart A (2003) Genetic basis of mycoparasitism: a mechanism of biological control by species of Trichoderma. N Z J Crop Hort Sci 31:281–291

    Article  Google Scholar 

  • Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10

    Article  CAS  Google Scholar 

  • Weindling R (1934) Studies on a lethal principle effective in the parasite action of Trichoderma lignorom, Rhizoctonia solani and other soil fungi. Phytopathology 24:1153–1179

    Google Scholar 

  • Woo SL, Scala F, Ruocco M (2006) The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181–185

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, L.C., Bora, P., Gogoi, M. (2020). Potential of Trichoderma spp. for Pest Management and Plant Growth Promotion in NE India. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_11

Download citation

Publish with us

Policies and ethics