Skip to main content

Use of Trichoderma in the Management of Diseases in North American Row Crops

  • Chapter
  • First Online:
Trichoderma

Part of the book series: Rhizosphere Biology ((RHBIO))

Abstract

North America is a continent having the largest row crop productions in the world. Disease management is critical to ensure the success and profitability of the producers each year. Traditionally, disease management in row crops has been through synthetic fungicides use. The number of biofungicides in market for row crop disease management is relatively few compared with other parts of the world, due to higher regulation standards for environmental protection. In this chapter, we review the current status of biological controls for row crops in which Trichoderma spp. and other biological agents are used. We discuss the major diseases of row crops and yield losses in the United States. A list of biopesticides with Trichoderma spp. as microbial active ingredient is complied with the latest registration by EPA as of July 25, 2018. We also discuss management options (seed treatments and foliar and soil applications) for some of the major diseases of a few row crops using biocontrol agents with a distinct reference to Trichoderma spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-El-Khair H, Khalifa RKM, Haggag KHE (2010) Effect of Trichoderma species on damping off diseases incidence, some plant enzymes activity and nutritional status of bean plants. J Am Sci 6:486–497

    Google Scholar 

  • Allen TW, Bradley CA, Sisson AJ, Byamukama E, Chilvers MI, Coker CM, Collins AA, Damicone JP, Dorrance AE, Dufault NS, Esker PE, Faske TR, Giesler LJ, Grybauskas AP, Hershman DE, Hollier CA, Isakeit T, Jardine DJ, Kelley HM, Kemerait RC, Kleczewski NM, Koenning SR, Kurle JE, Malvick DK, Markell SG, Mehl HL, Mueller DS, Mueller JD, Mulrooney RP, Nelson BD, Newman MA, Osborne L, Overstreet C, Padgett GB, Phipps PM, Price PP, Sikora EJ, Smith DL, Spurlock TN, Tande CA, Tenuta AU, Wise KA, Wrather JA (2017) Soybean yield loss estimates due to diseases in the United States and Ontario, Canada, from 2010 to 2014. Plant Health Prog 18:19–27

    Article  Google Scholar 

  • Bailey BA, Melnick RL (2013) The endophytic Trichoderma. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M (eds) Trichoderma: biology and applications, 1st edn. CAB International, London, pp 152–172

    Chapter  Google Scholar 

  • Barari H, Foroutan A (2016) Biocontrol of soybean charcoal root rot disease by using Trichoderma spp. Cercetări Agronomic Moldova 166:41–51

    Article  Google Scholar 

  • Broekaert WF, Terras FR, Cammue B, Vanderleyden J (1990) An automated quantitative assay for fungal growth inhibition. FEMS Microbiol Lett 69:55–59

    Article  CAS  Google Scholar 

  • Brozóvá J (2004) Mycoparasitic fungi Trichoderma spp. in plant protection. Plant Protect Sci 2:63–74

    Google Scholar 

  • Celar F (2003) Competition for ammonium and nitrate forms of nitrogen between some phytopathogenic and antagonistic soil fungi. Biol Control 28:19–24

    Article  CAS  Google Scholar 

  • Chaube HS, Mishra DS, Varshney S, Singh US (2003) Biocontrol of plant pathogens by fungal antagonists: historical background, present status and future prospects. Annu Rev Phytopathol 2:1–42

    Google Scholar 

  • Chet I (1993) Biotechnology in plant disease control. Wiley-Liss Inc., Hoboken, NJ

    Google Scholar 

  • Chet I, Harman GE, Baker R (1981) Trichoderma hamatum: its hyphal interactions with Rhizoctoniasolani and Pythium spp. Microb Ecol 7:29–38

    Article  CAS  PubMed  Google Scholar 

  • Dal BGM, Mónaco CI, Cháves AR (1997) Efecto de los metabolitos volátiles de Trichoderma harzianum sobre el crecimiento de hongos fitopatógenos procedentes del suelo. Rev Iberoam Mic 14:131–134

    Google Scholar 

  • Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev V, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi SK (2014) Role of antagonistic microbes in management of phytopathogenic fungi of some important crops. In: Kharwar RN, Upadhyay R, Dubey N, Raghuwanshi R (eds) Microbial diversity and biotechnology in food security. Springer, India, pp 273–292

    Google Scholar 

  • Ehteshamul HS, Ghaffar A, Zaki MJ (1990) Biological control of root rot diseases of okra, sunflower, soybean, and mungbean. Pak J Bot 22:121–124

    Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    Article  CAS  Google Scholar 

  • Etebarian HR (2010) Evaluation of Trichoderma isolates for biological control of charcoal stem rot in melon caused by Macrophomina phaseolina. J Agric Sci Technol 8:243–250

    Google Scholar 

  • Figueroa M, Hammond-Kosack KE, Solomon PS (2018) A review of wheat diseases-a field perspective. Mol Plant Pathol 19:1523–1536

    Article  PubMed  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol 1. Annu Rev Phytopathol 43:337–359

    Article  CAS  PubMed  Google Scholar 

  • García BFJ, Santamarina MP, Roselló J (2005) Trichoderma: mecanismos de control. Phytoma 172:106–107

    Google Scholar 

  • García-Garza JA, Reeleder RD, Paulitz TC (1997) Degradation of sclerotia of Sclerotinia sclerotiorum by fungus Gnats (Bradysia copropila) and the biocontrol fungi Trichoderma spp. Soil Biol Biochem 29:123–129

    Article  Google Scholar 

  • Gardener BBM, Fravel DR (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog 10. https://doi.org/10.1094/PHP-2002-0510-01-RV

  • Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M (2010) Biological potential of some Iranian Trichoderma isolates in the control of soil-borne plant pathogenic fungi. Afr J Biotechnol 7:967–972

    Google Scholar 

  • Hao J, Wang D, Hammerschmidt R (2010) Using biological agents to control soybean white mold. Michigan Soybean Checkoff. http://www.michigansoybean.org/MSPCSite/Research/FY10ResSum.pdf

  • Harman GE (1991) Seed treatments for biological control of plant disease. Crop Prot 10:166–171

    Article  Google Scholar 

  • Harman GE, Taylor AG (1988) Improved seedling performance by integration of biological control agents at favorable pH levels with solid matrix priming. Phytopathology 78:520–525

    Article  Google Scholar 

  • Harman GE, Chet I, Baker R (1980) Trichoderma hamatum effects on seed and seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathology 70:1167–1172

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Hartman GL (2015) Worldwide importance of soybean pathogens and pests. In: Compendium of soybean diseases and pests, 5th edn. The American Phytopathology, St. Paul, MN, pp 4–5, 201pp

    Google Scholar 

  • Hartman GL, Rupe JC, Sikora EJ, Domier LL, Davis JA, Steffey KL (2015) Soybean diseases in Argentina, Brazil, Canada, China, India and Japan. In: Compendium of soybean diseases and pests, 5th edn. The American Phytopathology, St. Paul, MN, pp 5, 201pp–16

    Google Scholar 

  • Howell CR (1982) Effect of Gliocladium virens on Pythium ultimum, Rhizoctonia solani, and damping-off of cotton seedlings. Phytopathology 72:496–498

    Article  Google Scholar 

  • Howell CR (2002) Cotton seedling pre-emergence damping-off induced by Rhizopus orizae and Pythium spp. and its biological control with Trichoderma spp. Phytopathology 92:177–180

    Article  CAS  PubMed  Google Scholar 

  • Howell CR (2006) Understanding the mechanisms employed by Trichoderma virens to effect biological control of cotton diseases. Phytopathology 96:178–180

    Article  PubMed  Google Scholar 

  • Jagtap GP, Gavate DS, Dey U (2012) Control of Colletotrichum truncatum causing anthracnose/pod blight of soybean by aqueous leaf extracts, biocontrol agents and fungicides. Agric Adv 1:39–52

    Google Scholar 

  • Jahagirdar S, Kambrekar DN, Navi SS, Kunta M (2019) Plant growth promoting fungi: diversity and classification. In: Jogaiah S, Abdelrahman M (eds) Bioactive molecules in plant immune defense. Springer, Cham, pp 25–34. https://doi.org/10.1007/978-3-030-27165-7_2

    Chapter  Google Scholar 

  • Jeffries P (1995) Biology and ecology of mycoparasitism. Can J Bot 73:1284–1290

    Article  Google Scholar 

  • Kandula DRW, Jones EE, Stewart A, McLean KL, Hampton JG (2015) Trichoderma species for biocontrol of soil-borne plant pathogens of pasture species. Biocontrol Sci Tech 25:1052–1069

    Article  Google Scholar 

  • Khaledi N, Taheri P (2016) Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina. J Plant Protect Res 56:21–31. https://doi.org/10.1515/jppr-2016-0004

    Article  CAS  Google Scholar 

  • Larralde-Corona CP, Santiago-Mena MR, Sifuentes-Rincon AM, Rodríguez-Luna IC, Rodriguez-Perez MA, Shirai K, Narvaez-Zapata JA (2008) Biocontrol potential and polyphasic characterization of novel native Trichoderma strains against Macrophomina phaseolina isolated from sorghum and common bean. Appl Microbiol Biotechnol 80:167–177

    Article  CAS  PubMed  Google Scholar 

  • Lawrence K, Hagan A, Nortan R, Hu J, Faske T, Hutmacher R, Mueller J, Small I, Grabau Z, Kemerait B, Overstreet C, Price P, Lawrence G, Allen T, Atwell S, Idowu J, Boman R, Goodson J, Kelly H, Woodward JE, Wheeler TA (2018) Cotton disease loss estimate committee report, 2018. In: Proceedings of the 2018 Beltwide cotton conferences, San Antonio, TX, January 3–5, 2018, pp 161–163

    Google Scholar 

  • Lewis JA, Larkin RP (1997) Extruded granular formulation with biomass of biocontrol Gliocladium virens and Trichoderma spp. to reduce damping-off of eggplant caused by Rhizoctonia solani and saprophytic growth of the pathogen in soil-less mix. Biocontrol Sci Technol 7:49–60

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1991a) Biocontrol of plant diseases: the approach for tomorrow. Crop Prot 10:95–105

    Article  Google Scholar 

  • Lewis JA, Papavizas GC (1991b) Biocontrol of cotton damping-off caused by Rhizoctonia solani in the field with formulations of Trichoderma spp. and Gliocladium virens. Crop Prot 10:396–402

    Article  Google Scholar 

  • Lifshitz R, Windham MT, Baker R (1986) Mechanism of biological control of pre-emergence damping-off of pea by seed treatment with Trichoderma spp. Phytopathology 76:720–725

    Article  Google Scholar 

  • Lopes FAC, Steindorff AS, Geraldine AM, Brandão RS, Monteiro VN, Júnior ML, Coelho ASG, Ulhoa CJ, Silva RN (2012) Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol 116:815–824

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Lewis JA, Hebbar PK, Lumsden RD (1997) Seed treatment with a fungal or a bacterial antagonist for reducing corn damping-off caused by species of Pythium and Fusarium. Plant Dis 81:450–454

    Article  CAS  PubMed  Google Scholar 

  • Mastouri F, Björkman T, Harman GE (2010) Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100:1213–1221

    Article  PubMed  CAS  Google Scholar 

  • Matroudi S, Zamani MR (2009) Antagonistic effects of three species of Trichoderma sp. on Sclerotinia sclerotiorum, the causal agent of canola stem rot. Egypt J Biol 11:37–44

    Google Scholar 

  • Mendoza JLH, Pérez MIS, Prieto JMG, Velásquez JDQ, Olivares JGG, Langarica HRG (2015) Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Braz J Microbiol 46:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menendez AB, Godeas A (1998) Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Mycopathologia 142:153–160

    Article  CAS  PubMed  Google Scholar 

  • Milanesi PM, Blume E, Antonioli ZI, Muniz MFB, Santos RFD, Finger G, Durigon MR (2013a) Biocontrole de Fusarium spp. com Trichoderma spp. e promoção de crescimento em plântulas de soja. Revista de Ciências Agrárias 36:347–356

    Google Scholar 

  • Milanesi PM, Blume E, Muniz MFB, Reiniger LRS, Antoniolli ZI, Junges E, Lupatini M (2013b) Detecção de Fusarium spp. e Trichoderma spp. e antagonismo de Trichoderma sp. em soja sob plantio direto. Semina: Ciências Agrárias 34:3219–3234

    CAS  Google Scholar 

  • Moreno CA, Castillo F, González A, Bernal D, Jaimes Y, Chaparro M, Gonzalez C, Rodriguez F, Restrepo S, Cotes AM (2009) Biological and molecular characterization of the response of tomato plants treated with Trichoderma koningiopsis. Physiol Mol Plant Pathol 74:111–120

    Article  CAS  Google Scholar 

  • Mueller D, Wise K, Sisson A (2018) Corn disease loss estimates from the United States and Ontario, Canada – 2017. Corn disease management, CPN-2007-17-W

    Google Scholar 

  • Navi SS, Bandyopadhyay R (2002) Biological control of fungal plant pathogens. In: Waller JM, Lenné JM, Waller SJ (eds) Plant pathologist’s pocketbook. CABI Publishing, Wallingford, UK, pp 354–365

    Google Scholar 

  • Navi SS, Yang XB (2016) Sudden death syndrome - a growing threat of losses in soybeans. CAB Rev 2016:11. https://doi.org/10.1079/PAVSNNR201611039. No. 039. http://www.cabi.org/cabreviews

  • Navi SS, Huynh T, Li X, Yang XB (2016) Effects of biocontrol agents in combination with bioAPT microbial carrier as seed treatment on soybean diseases and yields (Abstr). In: Khetarpal RK, Mondal KK, Dubey SC, Rao GP, Celia Chalam V, Singh N et al (eds) IPS 6th international conference on plant, pathogens and people, 23–27 Feb 2016, New Delhi, India, p 64, 676pp

    Google Scholar 

  • Navi SS, Rajasab AH, Yang XB (2018) Challenges and opportunities in management of soil borne pathogens of soybean using biocontrol agents. In: Singh D, Chakraborty BN, Pandey RN, Sharma P (eds) Biological control of crop diseases: recent advances & perspectives. Today & Tomorrow’s Printers and Publishers, New Delhi, pp 531–577

    Google Scholar 

  • Navi SS, Huynh T, Mayers CG, Yang XB (2019) Diversity of Pythium spp. associated with soybean damping-off, and management implications by using foliar fungicides as seed treatments. Phytopathol Res 1:8. https://doi.org/10.1186/s42483-019-0015-9

    Article  Google Scholar 

  • Nelson EB, Harman GE, Nash GT (1988) Enhancement of Trichoderma-induced biological control of Pythium seed rot and pre-emergence damping-off of peas. Soil Biol Biochem 20:145–150

    Article  CAS  Google Scholar 

  • Ojaghian MR (2011) Potential of Trichoderma spp. and Talaromyces flavus for biological control of potato stem rot caused by Sclerotinia sclerotiorum. Phytoparasitica 39:185–193

    Article  Google Scholar 

  • Padder BA, Sharma PN (2011) In vitro and in vivo antagonism of biocontrol agents against Colletotrichum lindemuthianum causing bean anthracnose. Arch Phytopathol Plant Protect 44:961–969

    Article  Google Scholar 

  • Papavizas GC (1985) Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23:23–54

    Article  Google Scholar 

  • Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407

    Article  CAS  PubMed  Google Scholar 

  • Samuels GJ, Hebbar PK (2015) Developing Trichoderma-based products for application in agriculture. In: Trichoderma identification and agricultural applications. The American Phytopathology, St. Paul, MN, pp 7–34

    Google Scholar 

  • Santos A, Garcia M, Cotes AM, Villamizar L (2011) The effect of the formulation on the shelf-life of biopesticides based on two Colombian isolates of Trichoderma koningiopsis Th003 and Trichoderma asperellum Th034. Rev Iberoam Micol 29:150–156

    Article  PubMed  Google Scholar 

  • Sawant IS, Rajguru YR, Salunkhe VP, Wadkar PN (2012) Evaluation and selection of efficient isolates of Trichoderma species from diverse locations in India for biological control of anthracnose disease of grapes. J Biol Control 26:50–60

    Google Scholar 

  • Scheuerell SJ, Sullivan DM, Mahaffee WF (2005) Suppression of seedling damping-off caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in container media amended with a diverse range of Pacific northwest compost sources. Phytopathology 95:306–315

    Article  PubMed  Google Scholar 

  • Schirmböck M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP (1994) Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Appl Environ Microbiol 60:4364–4370

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh PC, Nautiyal CS (2012) A novel method to prepare concentrated conidial biomass formulation of Trichoderma harzianum for seed application. J Appl Microbiol 113:1442–1450

    Article  CAS  PubMed  Google Scholar 

  • Sivan A, Chet I (1986) Biological control of Fusarium spp. in cotton, wheat and muskmelon by Trichoderma harzianum. J Phytopathol 116:39–47

    Article  Google Scholar 

  • Smith GS, Carvil ON (1997) Field screening of commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Dis 81:363–368

    Article  CAS  PubMed  Google Scholar 

  • Taylor AG, Harman GE (1990) Concepts and technologies of selected seed treatments. Annu Rev Phytopathol 28:321–339

    Article  Google Scholar 

  • Templeton GE, Heiny DK (1989) Improvement of fungi to enhance mycoherbicide potential. In: Whipps JM, Lumsden RD (eds) Biotechnology of fungi for improving plant growth. Cambridge University Press, Cambridge, UK, pp 127–152

    Google Scholar 

  • Verma M, Brar SK, Tyagi R, Surampalli R, Valero J (2007) Antagonistic fungi, Trichoderma spp.: panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Weindling R (1932) Trichoderma lignorum as a parasite of other soil fungi. Phytopathology 22:837–845

    Google Scholar 

  • Whipps JM, Budge SP (1990) Screening for sclerotial mycoparasites of Sclerotinia sclerotiorum. Mycol Res 94:607–612

    Article  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, UK, pp 9–22

    Chapter  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, Nigro M, Marra R, Lombardi N, Pascale A, Lanzuise S, Manganiello G, Lorito M (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol J 8(1):71–126

    Article  Google Scholar 

  • Wrather JA, Koenning SR (2009) Effects of diseases on soybean yields in the United States 1996 to 2007. Online. Plant Health Prog 10:24. https://doi.org/10.1094/PHP-2009-0401-01-RS

    Article  Google Scholar 

  • Wrather JA, Koenning SR (2010) Soybean disease loss estimates for the United States, 1996–2010. Delta Research Center, Agriculture Experiment Station, University of Missouri, College of Agriculture, Food and Natural Resources, Missouri

    Google Scholar 

  • Zinati GM (2005) Compost in the 20th century: a tool to control plant diseases in nursery and vegetable crops. HortTechnology 15(1):61–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrishail S. Navi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Navi, S.S., Yang, X.B. (2020). Use of Trichoderma in the Management of Diseases in North American Row Crops. In: Sharma, A., Sharma, P. (eds) Trichoderma. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-3321-1_10

Download citation

Publish with us

Policies and ethics