Skip to main content

A Novel U-Shaped Transfer Function for Binary Particle Swarm Optimisation

  • Conference paper
  • First Online:
Book cover Soft Computing for Problem Solving 2019

Abstract

Particle swarm optimisation (PSO), one of the most elegant algorithms in the field of nature-inspired optimisation, has many variants for solving different types of problems. One of these variants is binary particle swarm optimisation (BPSO), which is suitable for solving combinatorial optimisation problems. A main component of BPSO is the transfer function that maps continuous velocity values to probability values which in turn are used to update particle positions. Transfer function has a significant impact on the performance of BPSO algorithm. This paper proposes a novel transfer function with tunable parameters that allows different U-shaped transfer functions. For evaluating the proposed transfer functions, a set of benchmark functions and 0/1 knapsack problems are employed. The results show that the U-shaped transfer functions can significantly improve the performance of BPSO. It is also shown that the BPSO algorithms equipped with U-shaped transfer functions provide superior results compared to the existing transfer functions in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.math.mtu.edu/~kreher/cages/Data.html.

References

  1. L. Mason, J. Baxter, P.L. Bartlett, M.R. Frean, Boosting algorithms as gradient descent, in Advances in Neural Information Processing Systems (2000), pp. 512–518

    Google Scholar 

  2. D. Karaboga, B. Gorkemli, C. Ozturk, N. Karaboga, A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1), 21–57 (2014)

    Article  Google Scholar 

  3. C. Wang, D. Mu, F. Zhao, J.W. Sutherland, A parallel simulated annealing method for the vehicle routing problem with simultaneous pickup–delivery and time windows. Comput. Ind. Eng. 83, 111–122 (2015)

    Google Scholar 

  4. S. Salcedo-Sanz, Modern meta-heuristics based on nonlinear physics processes: a review of models and design procedures. Phys. Rep. 655, 1–70 (2016)

    Article  MathSciNet  Google Scholar 

  5. I. BoussaïD, J. Lepagnot, P. Siarry, A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Google Scholar 

  7. K. Fleetwood, An introduction to differential evolution, in Proceedings of Mathematics and Statistics of Complex Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia (2004)

    Google Scholar 

  8. R. Storn, Kenneth Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Knowles, D. Corne, The pareto archived evolution strategy: a new baseline algorithm for pareto multiobjective optimisation, in Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 1 (IEEE, 1999), pp. 98–105

    Google Scholar 

  10. J.R. Koza, Genetic Programming II, Automatic Discovery of Reusable Subprograms (MIT Press, Cambridge, MA, 1992)

    Google Scholar 

  11. Dan Simon, Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  12. M. Dorigo, M. Birattari, Thomas Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

    Article  Google Scholar 

  13. J. Kennedy, Particle swarm optimization, in Encyclopedia of Machine Learning (Springer, Boston, MA, 2011), pp. 760–766

    Google Scholar 

  14. D. Karaboga, Bahriye Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3), 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Y. Shi, Particle swarm optimization. IEEE Connect. 2(1), 8–13 (2004)

    Google Scholar 

  16. R.C. Eberhart, Y. Shi, Comparing inertia weights and constriction factors in particle swarm optimization, in Proceedings of the 2000 Congress on Evolutionary Computation, 2000, vol. 1 (IEEE, 2000), pp. 84–88

    Google Scholar 

  17. I.C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection. Inf. Process. Lett. 85(6), 317–325 (2003)

    Google Scholar 

  18. M.A. Khanesar, M. Teshnehlab, M.A. Shoorehdeli, A novel binary particle swarm optimization, in Mediterranean Conference on Control & Automation, 2007. MED’07 (IEEE, 2007), pp. 1–6

    Google Scholar 

  19. J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997. Computational Cybernetics and Simulation, vol. 5 (IEEE, 1997), pp. 4104–4108

    Google Scholar 

  20. S. Mirjalili, Andrew Lewis, S-shaped versus v-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput. 9, 1–14 (2013)

    Article  Google Scholar 

  21. E. Rashedi, H. Nezamabadi-Pour, Saeid Saryazdi, BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010)

    Google Scholar 

  22. Y. Shi, R.C. Eberhart, Empirical study of particle swarm optimization, in Proceedings of the 1999 Congress on Evolutionary Computation, 1999. CEC 99, vol. 3 (IEEE, 1999), pp. 1945–1950

    Google Scholar 

  23. M. Molga, C. Smutnicki, Test Functions for Optimization Needs (2005), p. 101

    Google Scholar 

  24. M. Jamil, X.-S. Yang, A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer. Optim. 4(2), 150–194 (2013)

    MATH  Google Scholar 

  25. S. Saremi, S. Mirjalili, A. Lewis, How important is a transfer function in discrete heuristic algorithms. Neural Comput. Appl. 26(3), 625–640 (2015)

    Article  Google Scholar 

  26. J.C. Bansal, K. Deep, A modified binary particle swarm optimization for Knapsack problems. Appl. Math. Comput. 218(22), 11042–11061 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedehzahra Mirjalili .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Unimodal Test Functions

$$ \begin{aligned}&f1(\varvec{x}) = \sum \limits _{i=1}^{n} x_i^2 \\&f2(\varvec{x}) = \sum _{i=1}^{n} | x_i | + \prod _{i=1}^{n} | x_i |\\&f3(\varvec{x}) = \sum _{i=1}^{n} \left( \sum _{j=1}^{i} x_j \right) ^2\\&f4(\varvec{x}) = \max _i \{ \left| x_i \right| , 1 \le i \le n \} \\&f5(\varvec{x}) = \sum _{i=1}^{n-1} \left( 100(x_{i+1}-x_i^2)^2 -(x_i - 1)^2 \right) \\&f6(\varvec{x}) = \sum _{i=1}^{n} ( x_i + 0.5)^2 \end{aligned} $$

1.2 Multi-modal Test Functions

$$\begin{aligned}&f7(\varvec{x}) = \sum _{i=1}^{n} ix_i^4 + \text {random}[0,1)\\&f8(\varvec{x}) = \sum _{i=1}^{n} \left( -x_i \sin \left( \sqrt{|x_i|}\right) \right) \\&f9(\varvec{x}) = \sum _{i=1}^{n} \left( x_i^2 - 10\cos (2 \pi x_i)+ 10 \right) \\&f10(\varvec{x}) = -20 e^{-0.2\sqrt{\frac{1}{n} \sum _{i=1}^{n}x_i^2}} -e^{\frac{1}{n} \sum _{i=1}^{n} \cos (2 \pi x_i)} + 20 + e\\&f11(\varvec{x}) = \frac{1}{4000} \sum _{i=1}^{n}x_i^2 - \prod _{i=1}^{n} \cos \left( \frac{x_i}{\sqrt{i}}\right) +1 \\&f12(\varvec{x}) = \frac{\pi }{n} \{ 10\sin (\pi y_1) + \sum _{i=1}^{n-1} (y_i-1)^2 \left[ 1+10 \sin ^2(\pi y_{i+1}) \right] \\&\qquad \qquad \quad + (y_n -1)^2 \} + \sum _{i=1}^{n} u(x_i,10,100,4)\\&y_i = 1 + \frac{x_i+1}{4} \end{aligned}$$
$$\begin{aligned} u(x_i,a,k,m) = {\left\{ \begin{array}{ll} k(x_i - a)^m &{} x_i > a \\ 0 &{} -a<x_i<a \\ k(-x_i - a)^m &{} x_i < -a \end{array}\right. } \end{aligned}$$

See Table 5 for details of the test functions.

Table 5 Details of the test functions

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirjalili, S., Zhang, H., Mirjalili, S., Chalup, S., Noman, N. (2020). A Novel U-Shaped Transfer Function for Binary Particle Swarm Optimisation. In: Nagar, A., Deep, K., Bansal, J., Das, K. (eds) Soft Computing for Problem Solving 2019 . Advances in Intelligent Systems and Computing, vol 1138. Springer, Singapore. https://doi.org/10.1007/978-981-15-3290-0_19

Download citation

Publish with us

Policies and ethics