Biocompatibility of Materials for Biomedical Engineering

  • Yu-Chang Tyan
  • Ming-Hui Yang
  • Chin-Chuan Chang
  • Tze-Wen ChungEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1250)


In the tissue engineering research field, nanobiomaterials highlight the impact of novel bioactive materials in both current applications and their potentials in future progress for tissue engineering and regenerative medicine. Tissue engineering is a well-investigated and challenging biomedical field, with promising perspectives to improve and support quality of life for the patient. To assess the response of those extracellular matrices (ECMs), induced by biomedical materials, this review will focus on cell response to natural biomaterials for biocompatibility.


Biocompatibile Bioactive Tissue engineering Extracellular matrix Cell/tissue reaction Nanoparticle Hyaluronic acid Silk fibroin Chitosan Cell-biomaterial interaction 



The authors thank S. Sheldon (Medical Technologist, American Society of Clinical Pathology, retired, MT, ASCP) of Oklahoma University Medical Center Edmond for fruitful discussions and editorial assistance. This work was supported by Research Grants NHRI- 108A1-MRCO-0419192 from the National Health Research Institutes; MOST-107- 2320-B-037-003, MOST-104-2221-E-10-004-MY3, and MOST-107-2221-E-010-005-MY3 from the Ministry of Science and Technology (MOST); AS-KPQ-105-TPP from Taiwan Protein Project; NSYSUKMU106-P011 from NSYSU-KMU Research Project; and KMU-TC108A04 from Kaohsiung Medical University Research Center Grant and the Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.


  1. 1.
    Black J (1982) The education of the biomaterialist: report of a survey. J Biomed Mater Res 16(2):159–167PubMedGoogle Scholar
  2. 2.
    Buddy D, Ratner (2004) Biomaterials science: an introduction to materials in medicine. Saint Louis, ElsevierGoogle Scholar
  3. 3.
    Bronzino JD (1999) Biomedical engineering handbook, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Helmus MN, Gibbons DF, Cebon D (2008) Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol Pathol 36(1):70–80PubMedGoogle Scholar
  5. 5.
    Al N, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discovery 3(6):655–669Google Scholar
  6. 6.
    Horvath S (1980) Cytotoxicity of drugs and diverse chemical agents to cell cultures. Toxicology 16(1):59–66PubMedGoogle Scholar
  7. 7.
    Bondesson I, Ekwall B, Hellberg S et al (1989) MEIC-A new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests. Cell Biol Toxicol 5(3):331–347PubMedGoogle Scholar
  8. 8.
    Andorko JI, Jewell CM (2017) Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Translat Med 2(2):139–155Google Scholar
  9. 9.
    Calabrese EJ (2005) Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35(2–3):89–295PubMedGoogle Scholar
  10. 10.
    Fage SW, Muris J, Jakobsen S et al (2016) Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 74(6):323–345PubMedGoogle Scholar
  11. 11.
    Blac J (1984) Systemic effects of biomaterials. Biomaterials 5(1):11–18Google Scholar
  12. 12.
    Bolognesi C, Castoldi AF, Crebelli R et al (2017) Genotoxicity testing approaches for the safety assessment of substances used in food contact materials prior to their authorization in the European Union. Environ Mol Mutagen 58(5):361–374PubMedGoogle Scholar
  13. 13.
    Watson AY, Bates RR, Kennedy D (eds) (1998) Air pollution, the automobile, and public health. National Academies Press, WashingtonGoogle Scholar
  14. 14.
    Soni S, Gupta H, Kumar N et al (2010) Biodegradable biomaterials. Recent Pat Biomed Eng 3(1):30–40Google Scholar
  15. 15.
    Amadeh A, Ebadpour R (2013) Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings. J Nanosci Nanotechnol 13(2):1360–1363PubMedGoogle Scholar
  16. 16.
    Kamachi Mudali U, Sridhar TM, Raj B (2003) Corrosion of bio implants. Sadhana 28:601–637Google Scholar
  17. 17.
    Yang MH, Chen KC, Chiang PW et al (2016) Proteomic profiling of neuroblastoma cells adhesion on hyaluronic acid-based surface for neural tissue engineering. Biomed Res Int 2016:1–13Google Scholar
  18. 18.
    Sugahara K, Schwartz NB, Dorfman A (1979) Biosynthesis of hyaluronic acid by streptococcus. J Biol Chem 254(14):6252–6261PubMedGoogle Scholar
  19. 19.
    Kakehi K, Kinoshita M, Yasueda S (2003) Hyaluronic acid: separation and biological implications. J Chromatogr B 797(1–2):347–355Google Scholar
  20. 20.
    Vigetti D, Karousou E, Viola M et al (2014) Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 1840(8):2452–2459PubMedGoogle Scholar
  21. 21.
    Kogan G, Soltes L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25PubMedGoogle Scholar
  22. 22.
    Toole BP, Zoltan-Jones A, Misra S et al (2005) Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions. Cells Tissues Organs 179(1–2):66–72PubMedGoogle Scholar
  23. 23.
    Itano N, Sawai T, Atsumi F et al (2004) Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 279(18):18679–18687PubMedGoogle Scholar
  24. 24.
    Sironen RK, Tammi M, Tammi R et al (2011) Hyaluronan in human malignancies. Exp Cell Res 317(4):383–391PubMedGoogle Scholar
  25. 25.
    Bharadwaj AG, Kovar JL, Loughman E et al (2009) Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing. Am J Pathol 174(3):1027–1036PubMedPubMedCentralGoogle Scholar
  26. 26.
    Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461PubMedGoogle Scholar
  27. 27.
    Liang J, Jiang D, Noble PW (2016) Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 97:186–203PubMedGoogle Scholar
  28. 28.
    Sherman LS, Matsumoto S, Su W et al (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J Cell Biol 2015:368584PubMedPubMedCentralGoogle Scholar
  29. 29.
    Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528PubMedGoogle Scholar
  30. 30.
    Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80(21):1921–1943PubMedGoogle Scholar
  31. 31.
    James R, Kesturu G, Balian G et al (2008) Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg [Am] 33(1):102–112Google Scholar
  32. 32.
    Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2):193–199PubMedPubMedCentralGoogle Scholar
  33. 33.
    Allison DD, Grande-Allen KJ (2006) Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12(8):2131–2140PubMedPubMedCentralGoogle Scholar
  34. 34.
    Morra M (2005) Engineering of biomaterials surfaces by hyaluronan. Biomacromolecules 6(3):1205–1223PubMedGoogle Scholar
  35. 35.
    Müller S, Koenig G, Charpiot A et al (2008) VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings. Adv Funct Mater 18(12):1767–1775Google Scholar
  36. 36.
    Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9(4, Suppl 1):5–15Google Scholar
  37. 37.
    Preston M, Sherman LS (2012) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179Google Scholar
  38. 38.
    Margolis RU, Margolis RK, Chang LB et al (1975) Glycosaminoglycans of brain during development. Biochemistry 14(1):85–88PubMedGoogle Scholar
  39. 39.
    Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461PubMedGoogle Scholar
  40. 40.
    Liang J, Jiang D, Noble PW (2016) Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 97:186–203PubMedGoogle Scholar
  41. 41.
    Sherman LS, Matsumoto S, Su W et al (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J Cell Biol 2015:368584PubMedPubMedCentralGoogle Scholar
  42. 42.
    Solis MA, Chen YH, Wong TY et al (2012) Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012:346972PubMedPubMedCentralGoogle Scholar
  43. 43.
    Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12(6):327–342PubMedGoogle Scholar
  44. 44.
    Yadav AK, Mishra P, Agrawal GP (2008) An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 16(2):91–107PubMedGoogle Scholar
  45. 45.
    Oh EJ, Park K, Kim KS et al (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141(1):2–12PubMedGoogle Scholar
  46. 46.
    Luo Y, Ziebell MR, Prestwich GD (2000) A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 1(2):208–218PubMedGoogle Scholar
  47. 47.
    Arulmoli J, Wright HJ, Phan DT et al (2016) Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 43:122–138PubMedPubMedCentralGoogle Scholar
  48. 48.
    Moshayedi P, Carmichael ST (2013) Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter 3(1):e23863PubMedPubMedCentralGoogle Scholar
  49. 49.
    Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43(5):401–414PubMedGoogle Scholar
  50. 50.
    Anitha A, Maya S, Deepa N et al (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 83(2):452–461Google Scholar
  51. 51.
    Yao K, Li J, Yao F, Yin Y (eds) (2011) Chitosan-based hydrogels: functions and applications. CRC Press, LondonGoogle Scholar
  52. 52.
    Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51PubMedGoogle Scholar
  53. 53.
    Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174PubMedPubMedCentralGoogle Scholar
  54. 54.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182Google Scholar
  55. 55.
    Pan H, Fu C, Huang L et al (2018) Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs 16(6):198PubMedCentralGoogle Scholar
  56. 56.
    Auwal SM, Zarei M, Tan CP et al (2017) Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nano 7(12):421Google Scholar
  57. 57.
    Shahzad S, Yar M, Siddiqi SA et al (2015) Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. J Mater Sci Mater Med 26(3):136PubMedGoogle Scholar
  58. 58.
    Ravi H, Kurrey N, Manabe Y et al (2018) Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng C Mater Biol Appl 91:785–795PubMedGoogle Scholar
  59. 59.
    Paramasivan S, Jones D, Baker L et al (2014) The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture. Am J Rhinol Allergy 28(5):361–365PubMedGoogle Scholar
  60. 60.
    Guo M, Ma Y, Wang C et al (2015) Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose. Carbohydr Polym 118:218–223PubMedGoogle Scholar
  61. 61.
    Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS et al (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66(3):333–344Google Scholar
  62. 62.
    Kandra P, Challa MM, Jyothi HK (2012) Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol 93(1):17–29PubMedGoogle Scholar
  63. 63.
    Muzzarelli RAA (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83(4):1433–1445Google Scholar
  64. 64.
    Zhang J, Xia W, Liu P et al (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8(7):1962–1987PubMedPubMedCentralGoogle Scholar
  65. 65.
    Cumpstey I (2013) Chemical modification of polysaccharides. ISRN Org Chem 2013:417672PubMedPubMedCentralGoogle Scholar
  66. 66.
    Pillay V, Seedat A, Choonara YE et al (2013) A review of polymeric refabrication techniques to modify polymer properties for biomedical and drug delivery applications. AAPS Pharm Sci Tech 14(2):692–711Google Scholar
  67. 67.
    Jayakumar R, Prabaharan M, Reis RL et al (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62(2):142–158Google Scholar
  68. 68.
    Chung TW, Wang SS, Wang YZ et al (2009) Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly (ε-caprolactone) films is influenced by nano-roughness chitosan surfaces. J Mater Sci Mater Med 20(1):397–404PubMedGoogle Scholar
  69. 69.
    Chung TW, Yang MC, Tseng CC et al (2011) Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits. Biomaterials 32(3):734–743PubMedGoogle Scholar
  70. 70.
    Adeli M, Kalantari M, Parsamanesh M et al (2011) Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. Nanomedicine 7(6):806–817PubMedGoogle Scholar
  71. 71.
    Chandra S, Barick KC, Bahadur D (2011) Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliv Rev 63(14–15):1267–1281PubMedGoogle Scholar
  72. 72.
    Barar J, Omidi Y (2014) Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts 4(1):3PubMedPubMedCentralGoogle Scholar
  73. 73.
    Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662PubMedGoogle Scholar
  74. 74.
    Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322PubMedGoogle Scholar
  75. 75.
    Saravanakumar G, Jo DG, Park JH (2012) Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Curr Med Chem 19(19):3212–3229PubMedGoogle Scholar
  76. 76.
    Calvo P, Remunan-Lopez C, Vila-Jato JL et al (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436PubMedGoogle Scholar
  77. 77.
    Rao W, Wang H, Han J et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9(6):5725–5740PubMedGoogle Scholar
  78. 78.
    Kaplan DL, Adams WW, Farmer B et al (1994) In: Kaplan DL, Adams WW, Farmer B, Viney C (eds) Silk polymers materials science and biotechnology. American Chemical Society, Washington DCGoogle Scholar
  79. 79.
    Santin M, Motta A, Freddi G et al (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46(3):382–389PubMedGoogle Scholar
  80. 80.
    Ha SW, Tonelli AE, Hudson SM (2005) Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6(3):1722–1731PubMedGoogle Scholar
  81. 81.
    Yang MH, Chung TW, Lu YS, et al (2015) Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells. Int J Mol Sci. 16(1):1657–76Google Scholar
  82. 82.
    Um IC, Kweon HY, Park YH et al (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29(2):91–97PubMedGoogle Scholar
  83. 83.
    Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988–1006PubMedPubMedCentralGoogle Scholar
  84. 84.
    Guziewicz N, Best A, Perez-Ramirez B et al (2011) Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 32(10):2642–2650PubMedPubMedCentralGoogle Scholar
  85. 85.
    Soffer L, Wang X, Zhang X et al (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19(5):653–664PubMedPubMedCentralGoogle Scholar
  86. 86.
    Yang Y, Chen X, Ding F et al (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 28(9):1643–1652PubMedGoogle Scholar
  87. 87.
    Li C, Vepari C, Jin HJ, Kim HJ et al (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124PubMedGoogle Scholar
  88. 88.
    Falini G, Weiner S, Addadi L (2003) Chitin-silk fibroin interactions: relevance to calcium carbonate formation in invertebrates. Calcif Tissue Int 72(5):548–554PubMedGoogle Scholar
  89. 89.
    Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416PubMedGoogle Scholar
  90. 90.
    Yeo JH, Lee KG, Lee YW et al (2003) Simple preparation and characteristics of silk fibroin microsphere. Eur Polym J 39(6):1195–1199Google Scholar
  91. 91.
    Aramwit P, Kanokpanont S, De-Eknamkul W et al (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107(5):556–561PubMedGoogle Scholar
  92. 92.
    Yang MH, Yuan SS, Chung TW et al (2014) Characterization of silk fibroin modified surface: a proteomic view of cellular response proteins induced by biomaterials. Biomed Res Int 2014:209469PubMedPubMedCentralGoogle Scholar
  93. 93.
    Nathwani BB, Jaffari M, Juriani AR et al (2009) Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobioscience 8(1):72–77PubMedGoogle Scholar
  94. 94.
    Chang SQ, Dai YD, Kang B et al (2009) Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700PubMedGoogle Scholar
  95. 95.
    Ito Y, Kajihara M, Imanishi Y (1991) Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J Biomed Mater Res 25(11):1325–1337PubMedGoogle Scholar
  96. 96.
    Torikai A, Shibata H (1999) Effect of ultraviolet radiation on photo-degradation of collagen. J Appl Polym Sci 73:1259–1265Google Scholar
  97. 97.
    Bellincampi LD, Dunn MG (1997) Effect of crosslinking method on collagen fiber-fibroblast interactions. J Appl Polym Sci 63:1493–1498Google Scholar
  98. 98.
    Sionkowska A (1999) Photochemical transformations in collagen in the presence of melanin. J Photochem Photobiol A Chem 124:91–94Google Scholar
  99. 99.
    Sionkowska A, Kaminska A (1999) Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macromol 24:337–340PubMedGoogle Scholar
  100. 100.
    Barbani N, Giusti P, Lazzeri L et al (1995) Bioartificial materials based on collagen :1. Collagen cross-linking with gaseous glutaraldehyde. J Biomater Sci Polym Ed 7(6):461–469PubMedGoogle Scholar
  101. 101.
    Friess W, Lee G (1996) Basic thermo-analytical studies of insoluble collagen matrices. Biomaterials 17(23):2289–2294PubMedGoogle Scholar
  102. 102.
    Larsen B, Salem DM, Sallam MA et al (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 338(22):2325–2336PubMedGoogle Scholar
  103. 103.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126PubMedPubMedCentralGoogle Scholar
  104. 104.
    Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73(2–3):137–172PubMedGoogle Scholar
  105. 105.
    Torchilin VP (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54(2):235–252PubMedGoogle Scholar
  106. 106.
    Park YJ, Lee JY, Chang YS et al (2002) Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 23(3):873–879PubMedGoogle Scholar
  107. 107.
    Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54(2):169–190PubMedGoogle Scholar
  108. 108.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392PubMedGoogle Scholar
  109. 109.
    Cheng CJ, Tietjen GT, Saucier-Sawyer JK et al (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247PubMedPubMedCentralGoogle Scholar
  110. 110.
    Grossen P, Witzigmann D, Sieber S et al (2017) PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release 260:46–60PubMedGoogle Scholar
  111. 111.
    Nottelet B, Darcos V, Coudane J (2015) Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 97(Pt B):350–370PubMedGoogle Scholar
  112. 112.
    Go DP, Gras SL, Mitra D et al (2011) Multilayered microspheres for the controlled release of growth factors in tissue engineering. Biomacromolecules 12(5):1494–1503PubMedGoogle Scholar
  113. 113.
    Tare RS, Khan F, Tourniaire G et al (2009) A microarray approach to the identification of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth. Biomaterials 30(6):1045–1055PubMedGoogle Scholar
  114. 114.
    Medine CN, Lucendo-Villarin B, Storck C et al (2013) Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem Cells Transl Med 2(7):505–509PubMedPubMedCentralGoogle Scholar
  115. 115.
    Khan F, Valere S, Fuhrmann S et al (2013) Synthesis and cellular compatibility of multi-block biodegradable poly(ε-caprolactone)-based polyurethanes. J Mater Chem B 1(20):2590–2600PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Yu-Chang Tyan
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  • Ming-Hui Yang
    • 7
    • 8
    • 9
  • Chin-Chuan Chang
    • 10
    • 11
    • 12
  • Tze-Wen Chung
    • 13
    • 14
    Email author
  1. 1.Department of Medical Imaging and Radiological SciencesKaohsiung Medical UniversityKaohsiungTaiwan
  2. 2.Center for Cancer ResearchKaohsiung Medical UniversityKaohsiungTaiwan
  3. 3.Graduate Institute of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  4. 4.Institute of Medical Science and TechnologyNational Sun Yat-sen UniversityKaohsiungTaiwan
  5. 5.Department of Medical ResearchKaohsiung Medical University HospitalKaohsiungTaiwan
  6. 6.Research Center for Environmental MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  7. 7.Department of Medical Education and ResearchKaohsiung Veterans General HospitalKaohsiungTaiwan
  8. 8.Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of PharmacyTaipei Medical UniversityTaipeiTaiwan
  9. 9.National Mosquito-Borne Diseases Control Research CenterNational Health Research InstitutesZhunanTaiwan
  10. 10.Department of Nuclear MedicineKaohsiung Medical University HospitalKaohsiungTaiwan
  11. 11.Graduate Institute of Clinical MedicineKaohsiung Medical UniversityKaohsiungTaiwan
  12. 12.Neuroscience Research CenterKaohsiung Medical UniversityKaohsiungTaiwan
  13. 13.Department of Biomedical EngineeringNational Yang-Ming UniversityTaipeiTaiwan
  14. 14.Center for Advanced Pharmaceutical Science and Drug DeliveryNational Yang-Ming UniversityTaipeiTaiwan

Personalised recommendations