Skip to main content

Biocompatibility of Materials for Biomedical Engineering

  • Chapter
  • First Online:
Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

In the tissue engineering research field, nanobiomaterials highlight the impact of novel bioactive materials in both current applications and their potentials in future progress for tissue engineering and regenerative medicine. Tissue engineering is a well-investigated and challenging biomedical field, with promising perspectives to improve and support quality of life for the patient. To assess the response of those extracellular matrices (ECMs), induced by biomedical materials, this review will focus on cell response to natural biomaterials for biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Black J (1982) The education of the biomaterialist: report of a survey. J Biomed Mater Res 16(2):159–167

    Article  CAS  PubMed  Google Scholar 

  2. Buddy D, Ratner (2004) Biomaterials science: an introduction to materials in medicine. Saint Louis, Elsevier

    Google Scholar 

  3. Bronzino JD (1999) Biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  4. Helmus MN, Gibbons DF, Cebon D (2008) Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicol Pathol 36(1):70–80

    Article  CAS  PubMed  Google Scholar 

  5. Al N, Moravec RA, Riss TL (2008) Update on in vitro cytotoxicity assays for drug development. Expert Opin Drug Discovery 3(6):655–669

    Article  Google Scholar 

  6. Horvath S (1980) Cytotoxicity of drugs and diverse chemical agents to cell cultures. Toxicology 16(1):59–66

    Article  CAS  PubMed  Google Scholar 

  7. Bondesson I, Ekwall B, Hellberg S et al (1989) MEIC-A new international multicenter project to evaluate the relevance to human toxicity of in vitro cytotoxicity tests. Cell Biol Toxicol 5(3):331–347

    Article  CAS  PubMed  Google Scholar 

  8. Andorko JI, Jewell CM (2017) Designing biomaterials with immunomodulatory properties for tissue engineering and regenerative medicine. Bioeng Translat Med 2(2):139–155

    Article  Google Scholar 

  9. Calabrese EJ (2005) Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35(2–3):89–295

    Article  CAS  PubMed  Google Scholar 

  10. Fage SW, Muris J, Jakobsen S et al (2016) Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 74(6):323–345

    Article  CAS  PubMed  Google Scholar 

  11. Blac J (1984) Systemic effects of biomaterials. Biomaterials 5(1):11–18

    Article  Google Scholar 

  12. Bolognesi C, Castoldi AF, Crebelli R et al (2017) Genotoxicity testing approaches for the safety assessment of substances used in food contact materials prior to their authorization in the European Union. Environ Mol Mutagen 58(5):361–374

    Article  CAS  PubMed  Google Scholar 

  13. Watson AY, Bates RR, Kennedy D (eds) (1998) Air pollution, the automobile, and public health. National Academies Press, Washington

    Google Scholar 

  14. Soni S, Gupta H, Kumar N et al (2010) Biodegradable biomaterials. Recent Pat Biomed Eng 3(1):30–40

    Article  CAS  Google Scholar 

  15. Amadeh A, Ebadpour R (2013) Effect of cobalt content on wear and corrosion behaviors of electrodeposited Ni-Co/WC nano-composite coatings. J Nanosci Nanotechnol 13(2):1360–1363

    Article  CAS  PubMed  Google Scholar 

  16. Kamachi Mudali U, Sridhar TM, Raj B (2003) Corrosion of bio implants. Sadhana 28:601–637

    Article  Google Scholar 

  17. Yang MH, Chen KC, Chiang PW et al (2016) Proteomic profiling of neuroblastoma cells adhesion on hyaluronic acid-based surface for neural tissue engineering. Biomed Res Int 2016:1–13

    CAS  Google Scholar 

  18. Sugahara K, Schwartz NB, Dorfman A (1979) Biosynthesis of hyaluronic acid by streptococcus. J Biol Chem 254(14):6252–6261

    Article  CAS  PubMed  Google Scholar 

  19. Kakehi K, Kinoshita M, Yasueda S (2003) Hyaluronic acid: separation and biological implications. J Chromatogr B 797(1–2):347–355

    Article  CAS  Google Scholar 

  20. Vigetti D, Karousou E, Viola M et al (2014) Hyaluronan: biosynthesis and signaling. Biochim Biophys Acta 1840(8):2452–2459

    Article  CAS  PubMed  Google Scholar 

  21. Kogan G, Soltes L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25

    Article  CAS  PubMed  Google Scholar 

  22. Toole BP, Zoltan-Jones A, Misra S et al (2005) Hyaluronan: a critical component of epithelial-mesenchymal and epithelial-carcinoma transitions. Cells Tissues Organs 179(1–2):66–72

    Article  CAS  PubMed  Google Scholar 

  23. Itano N, Sawai T, Atsumi F et al (2004) Selective expression and functional characteristics of three mammalian hyaluronan synthases in oncogenic malignant transformation. J Biol Chem 279(18):18679–18687

    Article  CAS  PubMed  Google Scholar 

  24. Sironen RK, Tammi M, Tammi R et al (2011) Hyaluronan in human malignancies. Exp Cell Res 317(4):383–391

    Article  CAS  PubMed  Google Scholar 

  25. Bharadwaj AG, Kovar JL, Loughman E et al (2009) Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing. Am J Pathol 174(3):1027–1036

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    Article  CAS  PubMed  Google Scholar 

  27. Liang J, Jiang D, Noble PW (2016) Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 97:186–203

    Article  CAS  PubMed  Google Scholar 

  28. Sherman LS, Matsumoto S, Su W et al (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J Cell Biol 2015:368584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Toole BP (2004) Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 4(7):528

    Article  CAS  PubMed  Google Scholar 

  30. Girish KS, Kemparaju K (2007) The magic glue hyaluronan and its eraser hyaluronidase: a biological overview. Life Sci 80(21):1921–1943

    Article  CAS  PubMed  Google Scholar 

  31. James R, Kesturu G, Balian G et al (2008) Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options. J Hand Surg [Am] 33(1):102–112

    Article  Google Scholar 

  32. Prestwich GD (2011) Hyaluronic acid-based clinical biomaterials derived for cell and molecule delivery in regenerative medicine. J Control Release 155(2):193–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Allison DD, Grande-Allen KJ (2006) Hyaluronan: a powerful tissue engineering tool. Tissue Eng 12(8):2131–2140

    Article  CAS  PubMed  Google Scholar 

  34. Morra M (2005) Engineering of biomaterials surfaces by hyaluronan. Biomacromolecules 6(3):1205–1223

    Article  CAS  PubMed  Google Scholar 

  35. Müller S, Koenig G, Charpiot A et al (2008) VEGF-functionalized polyelectrolyte multilayers as proangiogenic prosthetic coatings. Adv Funct Mater 18(12):1767–1775

    Article  CAS  Google Scholar 

  36. Tabata Y (2003) Tissue regeneration based on growth factor release. Tissue Eng 9(4, Suppl 1):5–15

    Article  Google Scholar 

  37. Preston M, Sherman LS (2012) Neural stem cell niches: roles for the hyaluronan-based extracellular matrix. Front Biosci (Schol Ed) 3:1165–1179

    Google Scholar 

  38. Margolis RU, Margolis RK, Chang LB et al (1975) Glycosaminoglycans of brain during development. Biochemistry 14(1):85–88

    Article  CAS  PubMed  Google Scholar 

  39. Jiang D, Liang J, Noble PW (2007) Hyaluronan in tissue injury and repair. Annu Rev Cell Dev Biol 23:435–461

    Article  CAS  PubMed  Google Scholar 

  40. Liang J, Jiang D, Noble PW (2016) Hyaluronan as a therapeutic target in human diseases. Adv Drug Deliv Rev 97:186–203

    Article  CAS  PubMed  Google Scholar 

  41. Sherman LS, Matsumoto S, Su W et al (2015) Hyaluronan synthesis, catabolism, and signaling in neurodegenerative diseases. Int J Cell Biol 2015:368584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Solis MA, Chen YH, Wong TY et al (2012) Hyaluronan regulates cell behavior: a potential niche matrix for stem cells. Biochem Res Int 2012:346972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liao YH, Jones SA, Forbes B et al (2005) Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 12(6):327–342

    Article  CAS  PubMed  Google Scholar 

  44. Yadav AK, Mishra P, Agrawal GP (2008) An insight on hyaluronic acid in drug targeting and drug delivery. J Drug Target 16(2):91–107

    Article  CAS  PubMed  Google Scholar 

  45. Oh EJ, Park K, Kim KS et al (2010) Target specific and long-acting delivery of protein, peptide, and nucleotide therapeutics using hyaluronic acid derivatives. J Control Release 141(1):2–12

    Article  CAS  PubMed  Google Scholar 

  46. Luo Y, Ziebell MR, Prestwich GD (2000) A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules 1(2):208–218

    Article  CAS  PubMed  Google Scholar 

  47. Arulmoli J, Wright HJ, Phan DT et al (2016) Combination scaffolds of salmon fibrin, hyaluronic acid, and laminin for human neural stem cell and vascular tissue engineering. Acta Biomater 43:122–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moshayedi P, Carmichael ST (2013) Hyaluronan, neural stem cells and tissue reconstruction after acute ischemic stroke. Biomatter 3(1):e23863

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43(5):401–414

    Article  CAS  PubMed  Google Scholar 

  50. Anitha A, Maya S, Deepa N et al (2011) Efficient water soluble O-carboxymethyl chitosan nanocarrier for the delivery of curcumin to cancer cells. Carbohydr Polym 83(2):452–461

    Article  CAS  Google Scholar 

  51. Yao K, Li J, Yao F, Yin Y (eds) (2011) Chitosan-based hydrogels: functions and applications. CRC Press, London

    Google Scholar 

  52. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  PubMed  Google Scholar 

  53. Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182

    Article  CAS  Google Scholar 

  55. Pan H, Fu C, Huang L et al (2018) Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar Drugs 16(6):198

    Article  PubMed Central  CAS  Google Scholar 

  56. Auwal SM, Zarei M, Tan CP et al (2017) Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nano 7(12):421

    Google Scholar 

  57. Shahzad S, Yar M, Siddiqi SA et al (2015) Chitosan-based electrospun nanofibrous mats, hydrogels and cast films: novel anti-bacterial wound dressing matrices. J Mater Sci Mater Med 26(3):136

    Article  PubMed  CAS  Google Scholar 

  58. Ravi H, Kurrey N, Manabe Y et al (2018) Polymeric chitosan-glycolipid nanocarriers for an effective delivery of marine carotenoid fucoxanthin for induction of apoptosis in human colon cancer cells (Caco-2 cells). Mater Sci Eng C Mater Biol Appl 91:785–795

    Article  CAS  PubMed  Google Scholar 

  59. Paramasivan S, Jones D, Baker L et al (2014) The use of chitosan-dextran gel shows anti-inflammatory, antibiofilm, and antiproliferative properties in fibroblast cell culture. Am J Rhinol Allergy 28(5):361–365

    Article  PubMed  Google Scholar 

  60. Guo M, Ma Y, Wang C et al (2015) Synthesis, anti-oxidant activity, and biodegradability of a novel recombinant polysaccharide derived from chitosan and lactose. Carbohydr Polym 118:218–223

    Article  CAS  PubMed  Google Scholar 

  61. Krishna Rao KSV, Vijaya Kumar Naidu B, Subha MCS et al (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66(3):333–344

    Article  CAS  Google Scholar 

  62. Kandra P, Challa MM, Jyothi HK (2012) Efficient use of shrimp waste: present and future trends. Appl Microbiol Biotechnol 93(1):17–29

    Article  PubMed  CAS  Google Scholar 

  63. Muzzarelli RAA (2011) Chitosan composites with inorganics, morphogenetic proteins and stem cells, for bone regeneration. Carbohydr Polym 83(4):1433–1445

    Article  CAS  Google Scholar 

  64. Zhang J, Xia W, Liu P et al (2010) Chitosan modification and pharmaceutical/biomedical applications. Mar Drugs 8(7):1962–1987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cumpstey I (2013) Chemical modification of polysaccharides. ISRN Org Chem 2013:417672

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Pillay V, Seedat A, Choonara YE et al (2013) A review of polymeric refabrication techniques to modify polymer properties for biomedical and drug delivery applications. AAPS Pharm Sci Tech 14(2):692–711

    Article  CAS  Google Scholar 

  67. Jayakumar R, Prabaharan M, Reis RL et al (2005) Graft copolymerized chitosan—present status and applications. Carbohydr Polym 62(2):142–158

    Article  CAS  Google Scholar 

  68. Chung TW, Wang SS, Wang YZ et al (2009) Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly (ε-caprolactone) films is influenced by nano-roughness chitosan surfaces. J Mater Sci Mater Med 20(1):397–404

    Article  CAS  PubMed  Google Scholar 

  69. Chung TW, Yang MC, Tseng CC et al (2011) Promoting regeneration of peripheral nerves in-vivo using new PCL-NGF/Tirofiban nerve conduits. Biomaterials 32(3):734–743

    Article  CAS  PubMed  Google Scholar 

  70. Adeli M, Kalantari M, Parsamanesh M et al (2011) Synthesis of new hybrid nanomaterials: promising systems for cancer therapy. Nanomedicine 7(6):806–817

    Article  CAS  PubMed  Google Scholar 

  71. Chandra S, Barick KC, Bahadur D (2011) Oxide and hybrid nanostructures for therapeutic applications. Adv Drug Deliv Rev 63(14–15):1267–1281

    Article  CAS  PubMed  Google Scholar 

  72. Barar J, Omidi Y (2014) Surface modified multifunctional nanomedicines for simultaneous imaging and therapy of cancer. Bioimpacts 4(1):3

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liu Z, Jiao Y, Wang Y et al (2008) Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 60(15):1650–1662

    Article  CAS  PubMed  Google Scholar 

  74. Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322

    Article  CAS  PubMed  Google Scholar 

  75. Saravanakumar G, Jo DG, Park JH (2012) Polysaccharide-based nanoparticles: a versatile platform for drug delivery and biomedical imaging. Curr Med Chem 19(19):3212–3229

    Article  CAS  PubMed  Google Scholar 

  76. Calvo P, Remunan-Lopez C, Vila-Jato JL et al (1997) Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 14(10):1431–1436

    Article  CAS  PubMed  Google Scholar 

  77. Rao W, Wang H, Han J et al (2015) Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 9(6):5725–5740

    Article  CAS  PubMed  Google Scholar 

  78. Kaplan DL, Adams WW, Farmer B et al (1994) In: Kaplan DL, Adams WW, Farmer B, Viney C (eds) Silk polymers materials science and biotechnology. American Chemical Society, Washington DC

    Google Scholar 

  79. Santin M, Motta A, Freddi G et al (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46(3):382–389

    Article  CAS  PubMed  Google Scholar 

  80. Ha SW, Tonelli AE, Hudson SM (2005) Structural studies of bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6(3):1722–1731

    Article  CAS  PubMed  Google Scholar 

  81. Yang MH, Chung TW, Lu YS, et al (2015) Activation of the ubiquitin proteasome pathway by silk fibroin modified chitosan nanoparticles in hepatic cancer cells. Int J Mol Sci. 16(1):1657–76

    Google Scholar 

  82. Um IC, Kweon HY, Park YH et al (2001) Structural characteristics and properties of the regenerated silk fibroin prepared from formic acid. Int J Biol Macromol 29(2):91–97

    Article  CAS  PubMed  Google Scholar 

  83. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61(12):988–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Guziewicz N, Best A, Perez-Ramirez B et al (2011) Lyophilized silk fibroin hydrogels for the sustained local delivery of therapeutic monoclonal antibodies. Biomaterials 32(10):2642–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Soffer L, Wang X, Zhang X et al (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polym Ed 19(5):653–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang Y, Chen X, Ding F et al (2007) Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials 28(9):1643–1652

    Article  CAS  PubMed  Google Scholar 

  87. Li C, Vepari C, Jin HJ, Kim HJ et al (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27(16):3115–3124

    Article  CAS  PubMed  Google Scholar 

  88. Falini G, Weiner S, Addadi L (2003) Chitin-silk fibroin interactions: relevance to calcium carbonate formation in invertebrates. Calcif Tissue Int 72(5):548–554

    Article  CAS  PubMed  Google Scholar 

  89. Altman GH, Diaz F, Jakuba C et al (2003) Silk-based biomaterials. Biomaterials 24(3):401–416

    Article  CAS  PubMed  Google Scholar 

  90. Yeo JH, Lee KG, Lee YW et al (2003) Simple preparation and characteristics of silk fibroin microsphere. Eur Polym J 39(6):1195–1199

    Article  CAS  Google Scholar 

  91. Aramwit P, Kanokpanont S, De-Eknamkul W et al (2009) Monitoring of inflammatory mediators induced by silk sericin. J Biosci Bioeng 107(5):556–561

    Article  CAS  PubMed  Google Scholar 

  92. Yang MH, Yuan SS, Chung TW et al (2014) Characterization of silk fibroin modified surface: a proteomic view of cellular response proteins induced by biomaterials. Biomed Res Int 2014:209469

    PubMed  PubMed Central  Google Scholar 

  93. Nathwani BB, Jaffari M, Juriani AR et al (2009) Fabrication and characterization of silk-fibroin-coated quantum dots. IEEE Trans Nanobioscience 8(1):72–77

    Article  PubMed  Google Scholar 

  94. Chang SQ, Dai YD, Kang B et al (2009) Gamma-radiation synthesis of silk fibroin coated CdSe quantum dots and their biocompatibility and photostability in living cells. J Nanosci Nanotechnol 9(10):5693–5700

    Article  CAS  PubMed  Google Scholar 

  95. Ito Y, Kajihara M, Imanishi Y (1991) Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J Biomed Mater Res 25(11):1325–1337

    Article  CAS  PubMed  Google Scholar 

  96. Torikai A, Shibata H (1999) Effect of ultraviolet radiation on photo-degradation of collagen. J Appl Polym Sci 73:1259–1265

    Article  CAS  Google Scholar 

  97. Bellincampi LD, Dunn MG (1997) Effect of crosslinking method on collagen fiber-fibroblast interactions. J Appl Polym Sci 63:1493–1498

    Article  CAS  Google Scholar 

  98. Sionkowska A (1999) Photochemical transformations in collagen in the presence of melanin. J Photochem Photobiol A Chem 124:91–94

    Article  CAS  Google Scholar 

  99. Sionkowska A, Kaminska A (1999) Thermal helix-coil transition in UV irradiated collagen from rat tail tendon. Int J Biol Macromol 24:337–340

    Article  CAS  PubMed  Google Scholar 

  100. Barbani N, Giusti P, Lazzeri L et al (1995) Bioartificial materials based on collagen :1. Collagen cross-linking with gaseous glutaraldehyde. J Biomater Sci Polym Ed 7(6):461–469

    Article  CAS  PubMed  Google Scholar 

  101. Friess W, Lee G (1996) Basic thermo-analytical studies of insoluble collagen matrices. Biomaterials 17(23):2289–2294

    Article  CAS  PubMed  Google Scholar 

  102. Larsen B, Salem DM, Sallam MA et al (2003) Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr Res 338(22):2325–2336

    Article  CAS  PubMed  Google Scholar 

  103. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73(2–3):137–172

    Article  CAS  PubMed  Google Scholar 

  105. Torchilin VP (2002) PEG-based micelles as carriers of contrast agents for different imaging modalities. Adv Drug Deliv Rev 54(2):235–252

    Article  CAS  PubMed  Google Scholar 

  106. Park YJ, Lee JY, Chang YS et al (2002) Radioisotope carrying polyethylene oxide-polycaprolactone copolymer micelles for targetable bone imaging. Biomaterials 23(3):873–879

    Article  CAS  PubMed  Google Scholar 

  107. Lavasanifar A, Samuel J, Kwon GS (2002) Poly(ethylene oxide)-block-poly(L-amino acid) micelles for drug delivery. Adv Drug Deliv Rev 54(2):169–190

    Article  CAS  PubMed  Google Scholar 

  108. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12):6387–6392

    CAS  PubMed  Google Scholar 

  109. Cheng CJ, Tietjen GT, Saucier-Sawyer JK et al (2015) A holistic approach to targeting disease with polymeric nanoparticles. Nat Rev Drug Discov 14(4):239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grossen P, Witzigmann D, Sieber S et al (2017) PEG-PCL-based nanomedicines: a biodegradable drug delivery system and its application. J Control Release 260:46–60

    Article  CAS  PubMed  Google Scholar 

  111. Nottelet B, Darcos V, Coudane J (2015) Aliphatic polyesters for medical imaging and theranostic applications. Eur J Pharm Biopharm 97(Pt B):350–370

    Article  CAS  PubMed  Google Scholar 

  112. Go DP, Gras SL, Mitra D et al (2011) Multilayered microspheres for the controlled release of growth factors in tissue engineering. Biomacromolecules 12(5):1494–1503

    Article  CAS  PubMed  Google Scholar 

  113. Tare RS, Khan F, Tourniaire G et al (2009) A microarray approach to the identification of polyurethanes for the isolation of human skeletal progenitor cells and augmentation of skeletal cell growth. Biomaterials 30(6):1045–1055

    Article  CAS  PubMed  Google Scholar 

  114. Medine CN, Lucendo-Villarin B, Storck C et al (2013) Developing high-fidelity hepatotoxicity models from pluripotent stem cells. Stem Cells Transl Med 2(7):505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Khan F, Valere S, Fuhrmann S et al (2013) Synthesis and cellular compatibility of multi-block biodegradable poly(ε-caprolactone)-based polyurethanes. J Mater Chem B 1(20):2590–2600

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank S. Sheldon (Medical Technologist, American Society of Clinical Pathology, retired, MT, ASCP) of Oklahoma University Medical Center Edmond for fruitful discussions and editorial assistance. This work was supported by Research Grants NHRI- 108A1-MRCO-0419192 from the National Health Research Institutes; MOST-107- 2320-B-037-003, MOST-104-2221-E-10-004-MY3, and MOST-107-2221-E-010-005-MY3 from the Ministry of Science and Technology (MOST); AS-KPQ-105-TPP from Taiwan Protein Project; NSYSUKMU106-P011 from NSYSU-KMU Research Project; and KMU-TC108A04 from Kaohsiung Medical University Research Center Grant and the Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tze-Wen Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyan, YC., Yang, MH., Chang, CC., Chung, TW. (2020). Biocompatibility of Materials for Biomedical Engineering. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_9

Download citation

Publish with us

Policies and ethics