Skip to main content

In Vivo Evaluation of the Biocompatibility of Biomaterial Device

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Biomaterials are widely used to produce devices for regenerative medicine. After its implantation, an interaction between the host immune system and the implanted biomaterial occurs, leading to biomaterial-specific cellular and tissue responses. These responses may include inflammatory, wound healing responses, immunological and foreign-body reactions, and even fibrous encapsulation of the implanted biomaterial device. In fact, the cellular and molecular events that regulate the success of the implant and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. This chapter focuses on host responses that must be taken into consideration in determining the biocompatibility of biomaterial devices when implanted in vivo of animal models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson JM (2019) Biocompatibility and bioresponse to biomaterials. In: Atala A, Lanza R, Mikos AG, Nerem R (eds) Principles of regenerative medicine, 3rd edn. Elsevier, London, pp 675–694

    Chapter  Google Scholar 

  2. Vasconcelos DP, Águas AP, Barbosa MA et al (2019) The inflammasome in host response to biomaterials : bridging inflammation and tissue regeneration. Acta Biomater 83:1–12

    Article  CAS  PubMed  Google Scholar 

  3. Christo SN, Diener KR, Bachhuka A et al (2015) Innate immunity and biomaterials at the nexus : friends or foes. Biomed Res Int 2015:342304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Saleh LS, Bryant SJ (2017) In vitro and in vivo models for assessing the host response to biomaterials. Drug Discov Today Dis Model 24:13–21

    Article  Google Scholar 

  5. Costa-Pinto A, Santos TC, Neves NM et al (2016) Testing natural biomaterials in animal models. In: Neves NM, Reis RL (eds) Biomaterials from nature for advanced devices and therapies, 1st edn. Wiley, Hoboken, pp 562–579

    Chapter  Google Scholar 

  6. Anderson JM (2001) Biological responses to materials. Annu Rev Mater Res 31:81–110

    Article  CAS  Google Scholar 

  7. Sheikh Z, Brooks PJ, Barzilay O et al (2015) Macrophages, foreign body giant cells and their response to implantable biomaterials. Materials 8(9):5671–5701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20(2):86–100

    Article  CAS  PubMed  Google Scholar 

  9. Salgado AJ, Coutinho OP, Reis RL et al (2007) In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res 80(4):983–989

    Article  CAS  Google Scholar 

  10. Delves PJ, Martin SJ, Burton DR et al (2011) Roitt’s essential immunology, 12th edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  11. Mariani E, Lisignoli G, Maria R et al (2019) Biomaterials: foreign bodies or tuners for the immune response? Int J Mol Sci 20(3):636

    Article  CAS  PubMed Central  Google Scholar 

  12. Santos TC, Reis RL, Marques AP (2016) Can host reaction animal models be used to predict and modulate skin regeneration? J Tissue Eng Regen Med 11(8):2295–2303

    Article  CAS  Google Scholar 

  13. Major MR, Wong VW, Nelson ER et al (2015) The foreign body response: at the interface of surgery and bioengineering. Plast Reconstr Surg 135(5):1489–1498

    Article  CAS  PubMed  Google Scholar 

  14. Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliv Rev 60(2):184–198

    Article  CAS  PubMed  Google Scholar 

  15. Hasirci V, Hasirci N (2018) Fundamentals of biomaterials. Springer, New York

    Book  Google Scholar 

  16. Gretchen SS, Fetz AE, Radic MZ et al (2017) An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater 4(1):55–68

    Article  CAS  Google Scholar 

  17. Weissman G, Smoles JE, Korchak HM (1980) Release of inflammatory mediators from stimulates neutrophils. N Engl J Med 303:27–34

    Article  Google Scholar 

  18. Wilson CJ, Clegg RE, Ph D et al (2005) Mediation of biomaterial – cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  CAS  PubMed  Google Scholar 

  19. Tang BL, Eaton JW (1993) Fibrin (ogen) mediates acute inflammatory responses to biomaterials. J Exp Med 178(6):2147–2156

    Article  CAS  PubMed  Google Scholar 

  20. Vroman L, Adams AL, Fischer GC et al (1980) Interaction of high molecular weight kininogen, factor XII, and fibrinogen in pPlasma at interfaces. Blood 55(1):156–159

    Article  CAS  PubMed  Google Scholar 

  21. Kim YK, Que R, Wang SW et al (2014) Modification of biomaterials with a self protein inhibts the macrophage response. Adv Healthc Mater 3(7):989–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Milleret V, Buzzi S, Gehrig P et al (2015) Protein adsorption steers blood contact activation on engineered cobalt chromium alloy oxide layers. Acta Biomater 24:343–351

    Article  CAS  PubMed  Google Scholar 

  23. Markiewski MM, Nilsson B, Ekdahl KN et al (2007) Complement and coagulation: strangers or partners in crime? Trends Immunol 28(4):184–192

    Article  CAS  PubMed  Google Scholar 

  24. Jenney CR, Anderson JM (2000) Adsorbed IgG: a potent adhesive substrate for human macrophages. J Biomed Mater Res 50(3):281–290

    Article  CAS  PubMed  Google Scholar 

  25. Gorbet MB, Sefton MV (2004) Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials 25(26):5681–5703

    Article  CAS  PubMed  Google Scholar 

  26. Ekdahl KN, Lambris JD, Elwing H et al (2011) Innate immunity activation on biomaterial surfaces: a mechanistic model and coping strategies. Adv Drug Deliv Rev 63(12):1042–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chiumiento A, Lamponi S, Barbucci R (2007) Role of fibrinogen conformation in platelet activation. Biomacromolecules 8(2):523–531

    Article  CAS  PubMed  Google Scholar 

  28. Wu Y, Simonovsky FI, Ratner BD, Horbett TA (2005) The role of adsorbed fibrinogen in platelet adhesion to polyurethane surfaces: a comparison of surface hydrophobicity, protein adsorption, monoclonal antibody binding, and platelet adhesion. J Biomed Mater Res 74(4):722–738

    Article  CAS  Google Scholar 

  29. Hong J, Ekdahl KN, Reynolds H et al (1999) A new in vitro model to study interaction between whole blood and biomaterials: studies of platelet and coagulation activation and the effect of aspirin. Biomaterials 20(7):603–611

    Article  CAS  PubMed  Google Scholar 

  30. Zhou G, Groth T (2018) Host responses to biomaterials and anti-inflammatory design — a brief review. Macromol Biosci 18(8):e1800112

    Article  PubMed  CAS  Google Scholar 

  31. Andersson J, Nilsson K, Lambris JD et al (2005) Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials 26(13):1477–1485

    Article  CAS  PubMed  Google Scholar 

  32. Flick MJ, Du X, Witte DP et al (2004) Leukocyte engagement of fibrin (ogen) via the integrin receptor α M β 2/Mac-1 is critical for host inflammatory response in vivo. J Clin Invest 113(11):1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nilsson B, Nilsson K, Eirik T et al (2007) The role of complement in biomaterial-induced inflammation. Mol Immunol 44(1–3):82–94

    Article  CAS  PubMed  Google Scholar 

  34. Szaba FM, Smiley ST (2002) Roles for thrombin and fibrin (ogen) in cytokune/chemokine production and macrophage adhesion in vivo. Blood 99(3):1053–1059

    Article  CAS  PubMed  Google Scholar 

  35. Li M, Peake PW, Charlesworth JA et al (2007) Complement activation contributes to leukocyte recruitment and neuropathic pain following peripheral nerve injury in rats. Eur J Neurosci 26(12):3486–3500

    Article  PubMed  Google Scholar 

  36. Hed J, Johansson M, Lindroth M (1984) Complement activation according to the alternate pathway by glass and plastic surfaces and its role in neutrophil adhesion. Immunol Lett 8(6):295–299

    Article  CAS  PubMed  Google Scholar 

  37. Sarma JV, Ward PA (2011) The complement system. Cell Tissue Res 343(1):227–235

    Article  CAS  PubMed  Google Scholar 

  38. Lhotta K, Wurzner R, Kronenberg F et al (1998) Rapid activation of the complement system by cuprophane depends on complement component C4. Kidney Int 53(4):1044–1051

    Article  CAS  PubMed  Google Scholar 

  39. Chenoweth DE (1987) Complement activation in extracorporeal circuits. Ann N Y Acad Sci 516:306–313

    Article  CAS  PubMed  Google Scholar 

  40. Becker EL (1972) The relationship of the chemotactic behavior of the complement-derived factors, C3a, C5a, and C567, and a bacterial chemotactic factor to their ability to activate the proesterase 1 of rabbit polymorphonuclear leukocytes. J Exp Med 135(2):376–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McNally AK, Jones JA et al (2008) Vitronectin is a critical protein adhesion substrate for IL-4-induced foreign body giant cell formation. J Biomed Mater Res 86(2):535–543

    Article  CAS  Google Scholar 

  42. Keselowsky BG, Bridges AW, Burns KL et al (2007) Role of plasma fibronectin in the foreign body response to biomaterials. Biomaterials 28(25):3626–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shen M, Garcia I, Maier RV et al (2004) Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes. J Biomed Mater Res 70(4):533–541

    Article  CAS  Google Scholar 

  44. Franz S, Rammelt S, Scharnweber D et al (2011) Biomaterials immune responses to implants-a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32(28):6692–6709

    Article  CAS  PubMed  Google Scholar 

  45. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  CAS  PubMed  Google Scholar 

  46. Bianchi ME (2007) DAMPs, PAMPs and alarmins : all we need to know about danger. J Leucoc Biol 81(1):1–5

    Article  CAS  Google Scholar 

  47. Grandjean-laquerriere A, Tabary O, Jacquot J et al (2007) Involvement of toll-like receptor 4 in the inflammatory reaction induced by hydroxyapatite particles. Biomaterials 28(3):400–404

    Article  CAS  PubMed  Google Scholar 

  48. De Oliveira S, López-muñoz A, Candel S et al (2014) ATP modulates acute inflammation in vivo through dual oxidase 1 − derived H 2 O 2 production and NF- κ B activation. J Immunol 192(12):5710–5719

    Article  PubMed  CAS  Google Scholar 

  49. Lee J, Jackman JG, Kwun J et al (2017) Nucleic acid scavenging microfiber mesh inhibits trauma-induced inflammation and thrombosis. Biomaterials 120:94–102

    Article  CAS  PubMed  Google Scholar 

  50. Wright HL, Moots RJ, Bucknall RC et al (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49(9):1618–1631

    Article  CAS  PubMed  Google Scholar 

  51. Labow RS, Meek E, Santerre JP (2001) Neutrophil-mediated biodegradation of medical implant materials. J Cell Physiol 186(1):95–103

    Article  CAS  PubMed  Google Scholar 

  52. Nimeri G, Ohman L, Elwing H et al (2002) The influence of plasma proteins and platelets on oxygen radical production and F-actin distribution in neutrophils adhering to polymer surfaces. Biomaterials 23(8):1785–1795

    Article  CAS  PubMed  Google Scholar 

  53. Nimeri G, Majeed M, Elwing H et al (2003) Oxygen radical production in neutrophils interacting with platelets and surface-immobilized plasma proteins : role of tyrosine phosphorylation. J Biomed Mater Res 67(2):439–447

    Article  CAS  Google Scholar 

  54. Branzk N, Lubojemska A, Hardison SE et al (2015) Europe PMC funders group neutrophils sense microbial size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15(11):1017–1025

    Article  CAS  Google Scholar 

  55. Hahn J, Schauer C, Czegley C et al (2018) Aggregated neutrophil extracellular traps resolve inflammation by proteolysis of cytokines and chemokines and protection from antiproteases. FASEB J 33(1):1401–1414

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yamashiro S, Kamohara H, Wang J et al (2001) Phenotypic and functional change of cytokine-activated neutrophils: inflammatory neutrophils are heterogeneous and enhance adaptive immune responses. J Leucoc Biol 69(5):698–704

    CAS  Google Scholar 

  57. Altieri DC, Mannucci PM, Capitanio AM (1986) Binding of fibrinogen to human monocytes. J Clin Invest 78(4):968–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mesure L, De Visscher G, Vranken I et al (2010) Gene expression study of monocytes/macrophages during early foreign body reaction and identification of potential precursors of myofibroblasts. PLoS One 5(9):e12949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lynn AD, Kyriakides TR, Bryant SJ (2009) Characterization of the in vitro macrophage response and in vivo host response to poly (ethylene glycol)-based hydrogels. J Biomed Mater Res Part A 93(3):941–953

    Google Scholar 

  61. Zhao Q, Topham N, Anderson JM (1991) Foreign-body giant cells and polyurethane biostability : in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 25(2):177–183

    Article  CAS  PubMed  Google Scholar 

  62. Mantovani A, Vecchi A, Allavena P (2014) ScienceDirect pharmacological modulation of monocytes and macrophages. Curr Opin Pharmacol 17:38–44

    Article  CAS  PubMed  Google Scholar 

  63. Wynn TA, Ph D, Barron L, Ph D (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Taylor PR, Martinez-Pomares L, Stacey M et al (2005) Macrophage receptors and immune recognition. Annu Rev Immunol 23:901–944

    Article  CAS  PubMed  Google Scholar 

  65. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Brodbeck WG, Macewan M, Colton E et al (2005) Lymphocytes and the foreign body response : lymphocyte enhancement of macrophage adhesion and fusion. J Biomed Mater Res A 74(2):222–229

    Article  PubMed  CAS  Google Scholar 

  67. Helming L, Gordon S (2007) Macrophage fusion induced by IL-4 alternative activation is a multistage process involving multiple target molecules. Eur J Immunol 37(1):33–42

    Article  CAS  PubMed  Google Scholar 

  68. Arpaia N, Green JA, Moltedo B et al (2015) A distinct function of regulatory t cells in tissue protection. Cell 162(5):1078–1089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Browder T, Folkman J, Pirie-shepherd S (2000) The hemostatic system as a regulator of angiogenesis. J Biol Chem 275(3):1521–1524

    Article  CAS  PubMed  Google Scholar 

  70. Ward WK (2008) A review of the foreign-body response to subcutaneously-implanted devices: the role of macrophages and cytokines in biofouling and fibrosis. J Diabetes Sci Technol 2(5):768–777

    Article  Google Scholar 

  71. Ratner BD (2002) Reducing capsular thickness and enhancing angiogenesis around implant drug release systems. J Control Release 78(1–3):211–218

    Article  CAS  PubMed  Google Scholar 

  72. Diegelmann RF, Evans MC (2004) Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci 9:283–289

    Article  CAS  PubMed  Google Scholar 

  73. Rockey DC, Bell D, Hill JA (2015) Fibrosis—a common pathway to organ injury and failure. N Engl J Med 372(1):1138–1149

    Article  CAS  PubMed  Google Scholar 

  74. Van Zutphen LFM, Baumans V, Beynen AC (2001) Principles of laboratory animal science, revised edition, 1st edn. Elsevier, New York

    Google Scholar 

  75. Azab AK, Doviner V, Orkin B et al (2007) Biocompatibility evaluation of crosslinked chitosan hydrogels after subcutaneous and intraperitoneal implantation in the rat. J Biomed Mater Res A 83(2):414–422

    Article  PubMed  CAS  Google Scholar 

  76. De Souza R, Zahedi P, Allen CJ et al (2009) Biocompatibility of injectable chitosan-phopholipid implant systems. Biomaterials 30(23–24):3818–3824

    Article  PubMed  CAS  Google Scholar 

  77. Tomazic-Jezic VJ, Merritt K, Umbreit TH (2001) Significance of the type and the size of biomaterial particles on phagocytosis and tissue distribution. J Biomed Mater Res 55(4):523–529

    Article  CAS  PubMed  Google Scholar 

  78. Bajaj G, Van Alstine WG, Yeo Y (2012) Zwitterionic chitosan derivative, a new bBiocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS One 7(1):e30899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lozano FS, García-Criado FJ, Fresnadillo MJ et al (2002) Systemic inflammatory response induced by dacron graft and modulation by antimicrobial agents: experimental study. J Surg Res 107(1):7–13

    Article  CAS  PubMed  Google Scholar 

  80. Busuttil SJ, Ploplis VA, Castellino FJ et al (2004) A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Harmostasis 2(10):1798–1805

    Article  CAS  Google Scholar 

  81. Schlosser M, Wilhelm L, Urban G et al (2002) Immunogenicity of polymeric implants: long-term antibody response against polyester (Dacron) following the implantation of vascular prostheses into LEW.1A rats. J Biomed Mater Res 61(3):450–457

    Article  CAS  PubMed  Google Scholar 

  82. Skokos EA, Charokopos A, Khan K et al (2011) Lack of TNF-α-induced MMP-9 production and abnormal E-cadherin redistribution associated with compromised fusion in MCP-1-null macrophages. Am J Pathol 178(5):2311–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kyriakides TR, Foster MJ, Keeney GE et al (2004) The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol 165(2):2157–2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mendes JB, Campos PP, Ferreira MAND et al (2007) Host response to sponge implants differs between subcutaneous and intraperitoneal sites in mice. J Biomed Mater Res B Appl Biomater 83(2):408–415

    Article  PubMed  CAS  Google Scholar 

  85. King A, Sandler S, Andersson A (2001) The effect of host factors and capsule composition on the cellular overgrowth on implanted alginate capsules. J Biomed Mater Res 57(3):374–383

    Article  CAS  PubMed  Google Scholar 

  86. Rodriguez A, MacEwan SR, Meyerson H et al (2009) The foreign body reaction in T-cell-deficient mice. J Biomed Mater Res A 90(1):106–113

    Article  PubMed  CAS  Google Scholar 

  87. Yang J, Jao B, Mcnally AK et al (2014) In vivo quantitative and qualitative assessment of foreign body giant cell formation on biomaterials in mice deficient in natural killer lymphocyte subsets, mast cells, or the interleukin-4 receptorα and in severe combined immunodeficient mice. J Biomed Mater Res A 102(6):2017–2023

    Article  PubMed  CAS  Google Scholar 

  88. Avula MN, Rao AN, McGill LD et al (2014) Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kitw-Sh murine model. Acta Biomater 10(5):1856–1863

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez R, Hill SJ, Mattar SG et al (2011) Absorbable versus nonabsorbable mesh repair of congenital diaphragmatic hernias in a growing animal model. J Laparoendosc Adv Surg Tech 21(5):449–454

    Article  Google Scholar 

  90. Roth WJ, Kissinger CB, McCain RR et al (2013) Assessment of juvenile pigs to serve as human pediatric surrogates for preclinical formulation pharmacokinetic testing. AAPS J 15:763–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Seaton M, Hocking A, Gibran NS (2015) Porcine models of cutaneous wound healing. ILAR J 56(1):127–138

    Article  CAS  PubMed  Google Scholar 

  92. Krause TJ, Robertson FM, Greco RS (1993) Measurement of intracellular hydrogen peroxide induced by biomaterials implanted in a rodent air pouch. J Biomed Mater Res 27(1):65–69

    Article  CAS  PubMed  Google Scholar 

  93. Hooper KA, Nickolas TL, Yurkow EJ et al (2000) Characterization of the inflammatory response to biomaterials using a rodent air pouch model. J Biomed Mater Res 50(3):365–374

    Article  CAS  PubMed  Google Scholar 

  94. Wooley PH, Morren R, Andary J et al (2002) Inflammatory responses to orthopaedic biomaterials in the murine air pouch. Biomaterials 23(2):517–526

    Article  CAS  PubMed  Google Scholar 

  95. Kao WJ, Lee D (2001) In vivo modulation of host response and macrophage behavior by polymer networks grafted with fibronectin-derived biomimetic oligopeptides: the role of RGD and PHSRN domains. Biomaterials 22(21):2901–2909

    Article  CAS  PubMed  Google Scholar 

  96. Brodbeck WG, Patel J, Voskerician G et al (2002) Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo. PNAS 99(16):10287–10292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Laschke MW, Haufel JM, Thorlacius H et al (2005) New experimental approach to study host tissue response to surgical mesh materials in vivo. J Biomed Mater Res A 74(4):696–704

    Article  CAS  PubMed  Google Scholar 

  98. Brodbeck WG, Voskerician G, Ziats NP et al (2003) In vivo leukocyte cytokine mRNA responses to biomaterials are dependent on surface chemistry. J Biomed Mater Res A 64(2):320–329

    Article  PubMed  CAS  Google Scholar 

  99. Pawlina W (2016) Histology – text and atlas, 7th edn. Wolters Kluwer Health, Philadelphia

    Google Scholar 

  100. Correia RC, Santos TC, Pirraco RP et al (2017) In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells. Acta Biomater 15:483–494

    Article  CAS  Google Scholar 

  101. Popa EG, Carvalho PP, Dias AF et al (2014) Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels. Soc Biomater 102(11):4087–4097

    Google Scholar 

  102. Marques AP, Reis RL, Hunt JA (2005) An in vivo study of the host response to starch-based polymers and composites subcutaneously implanted in rats. Macromol Biosci 5:775–785

    Article  CAS  PubMed  Google Scholar 

  103. Rodrigues MT, Gomes ME, Viegas CA et al (2011) Tissue-engineered constructs based on SPCL scaffolds cultured with goat marrow cells: functionality in femoral defects. J Tissue Eng Regen Med 5(1):41–49

    Article  CAS  PubMed  Google Scholar 

  104. Spiller KL, Wrona EA, Romero-Torres S et al (2016) Differential gene expression in human, murine, and cell line-derived macrophages upon polarization. Exp Cell Res 347(1):1–13

    Article  CAS  PubMed  Google Scholar 

  105. Siegers GM, Swamy M, Fernández-Malavé E et al (2007) Different composition of the human and the mouse γδ T cell receptor explains different phenotypes of CD3γ and CD3δ immunodeficiencies. J Exp Med 204(11):2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mestas J, Hughes CCW (2004) Of mice and not men: differences between mouse and human immunology. J Immunol 172(5):2731–2738

    Article  CAS  PubMed  Google Scholar 

  107. Rodríguez E, Ip WH, Kolbe V et al (2017) Humanized mice reproduce acute and persistent human adenovirus infection. J Infect Dis 215(1):70–79

    Article  PubMed  CAS  Google Scholar 

  108. Jespersen H, Lindberg MF, Donia M et al (2017) Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun 8:707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Rong Z, Wang M, Hu Z et al (2014) An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14(1):121–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Nishimura T, Hu Y, Wu M et al (2012) Using chimeric mice with humanized livers to predict human drug metabolism and a drug-drug interaction. J Pharmacol Exp Ther 344(2):388–396

    Article  PubMed  CAS  Google Scholar 

  111. Walsh NC, Kenney LL, Jangalwe S et al (2017) Humanized mouse models of clinical disease. Annu Rev Pathol 12:187–215

    Article  CAS  PubMed  Google Scholar 

  112. Duchosal MA, Eming SA, McConahey PJ et al (1992) The hu-PBL-SCID mouse model. Long-term human serologic evolution associated with the xenogeneic transfer of human peripheral blood leukocytes into SCID mice. Cell Immunol 139(2):468–477

    Article  CAS  PubMed  Google Scholar 

  113. Greiner DL, Hesselton RA, Shultz LD (1998) SCID mouse models of human stem cell engraftment. Stem Cells 16(3):166–177

    Article  CAS  PubMed  Google Scholar 

  114. Legrand N, Weijer K, Spits H (2014) Experimental models to study development and function of the human immune system in vivo. J Immunol 176(4):2053–2058

    Article  Google Scholar 

  115. McCune JM (1996) Development and applications of the SCID-hu mouse model. Semin Immunol 8(4):187–196

    Article  CAS  PubMed  Google Scholar 

  116. Denton PW, García JV (2011) Humanized mouse models of HIV infection. AIDS Rev 13(3):135–148

    PubMed  PubMed Central  Google Scholar 

  117. Shultz LD, Brehm MA, Garcia-Martinez JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12(11):786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wege AK, Melkus MW, Denton PW et al (2008) Functional and phenotypic characterization of the humanized BLT mouse model. Curr Top Microbiol Immunol 324:149–165

    CAS  PubMed  Google Scholar 

  119. Shultz LD, Schweitzer PA, Christianson SW et al (1995) Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. J Immunol 154(1):180–191

    CAS  PubMed  Google Scholar 

  120. Shultz LD, Lyons BL, Burzenski LM et al (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemotopoietic stem cells. J Immunol 174(10):6477–6489

    Article  CAS  PubMed  Google Scholar 

  121. Wang RM, Johnson TD, He J et al (2017) Humanized mouse model for assessing the human immune respose to xenogeneic and allogeneic decellularized biomaterials. Biomaterials 129:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. He J, Rong Z, Fu X, Xu Y (2017) A safety checkpoint to eliminate cancer risk of the immune evasive cells derived from human embryonic stem cells. Stem Cells 35(5):1154–1161

    Article  CAS  PubMed  Google Scholar 

  123. Zhao T, Zhang Z, Westenskow PD et al (2015) Humanized mice reveal differential immunogenicity of cells derived from autologous induced pluripotent stem cells. Cell Stem Cell 17(3):353–359

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frazão, L.P., Vieira de Castro, J., Neves, N.M. (2020). In Vivo Evaluation of the Biocompatibility of Biomaterial Device. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_8

Download citation

Publish with us

Policies and ethics